Skip to main content
Log in

Inverse Radon transform-based reconstruction with an open-sided magnetic particle imaging prototype

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Magnetic particle imaging (MPI) is an emerging imaging modality in which the spatial distribution of the superparamagnetic iron-oxide nanoparticles is imaged with high spatio-temporal resolution. In this study, an open-bore MPI prototype system capable of scanning a field-free line electronically was used to obtain two-dimensional images. Two 4-mm-diameter cylindrical tube phantoms with 0 and 75% stenosis were imaged with a relatively low gradient field of 0.5 T/m. The reconstruction was done using the X-space method with the inverse Radon transform (IRT). We propose improvement steps to IRT by applying different deconvolution techniques and receiver coil sensitivity correction operations. A comparative analysis on the proposed methods is demonstrated both visually and quantitatively along with the system matrix reconstruction method using Kaczmarz algorithm. The obtained results show that the X-space methods can outperform system matrix-based algorithm for the presented MPI configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046), 1214–1217 (2005)

    Article  Google Scholar 

  2. Zhou, X.Y., Tay, Z.W., Chandrasekharan, P., Yu, E.Y., Hensley, D.W., Orendorff, R., Jeffris, K.E., Mai, D., Zheng, B., Goodwill, P.W., Conolly, S.M.: Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. Curr. Opin. Chem. Biol. 45, 131–138 (2018)

    Article  Google Scholar 

  3. Rivera-Rodriguez, A., Hoang-Minh, L.B., Chiu-Lam, A., Sarna, N., Marrero-Morales, L., Mitchell, D.A., Rinaldi-Ramos, C.M.: Tracking adoptive T cell immunotherapy using magnetic particle imaging. Nanotheranostics 5(4), 431–444 (2021)

    Article  Google Scholar 

  4. Yu, E.Y., Bishop, M., Zheng, B., Ferguson, R.M., Khandhar, A.P., Kemp, S.J., Krishnan, K.M., Goodwill, P.W., Conolly, S.M.: Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 17(3), 1648–1654 (2017)

    Article  Google Scholar 

  5. Chandrasekharan, P., Tay, Z.W., Hensley, D., Zhou, X.Y., Fung, B.K., Colson, C., Lu, Y., Fellows, B.D., Huynh, Q., Saayujya, C., Yu, E., Orendorff, R., Zheng, B., Goodwill, P., Rinaldi, C., Conolly, S.: Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics 10(7), 2965 (2020)

    Article  Google Scholar 

  6. Le, T.A., Zhang, X., Hoshiar, A.K., Yoon, J.: Real-time two-dimensional magnetic particle imaging for electromagnetic navigation in targeted drug delivery. Sensors 17(9), 2050 (2017)

    Article  Google Scholar 

  7. Weizenecker, J., Gleich, B., Borgert, J.: Magnetic particle imaging using a field free line. J. Phys. D Appl. Phys. 41(10), 105009 (2008)

    Article  Google Scholar 

  8. Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J.: Signal encoding in magnetic particle imaging: properties of the system function. BMC Med. Imaging 9, 4 (2009)

    Article  Google Scholar 

  9. Goodwill, P.W., Conolly, S.M.: Multidimensional x-space magnetic particle imaging. IEEE Trans. Med. Imaging 30(9), 1581–1590 (2011)

    Article  Google Scholar 

  10. Goodwill, P.W., Konkle, J.J., Zheng, Bo., Saritas, E.U., Conolly, S.T.: Projection X-space magnetic particle imaging. IEEE Trans. Med. Imaging 31(5), 1076–1085 (2012)

    Article  Google Scholar 

  11. Knopp, T., Sattel, T.F., Biederer, S., Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: Model-based reconstruction for magnetic particle imaging. IEEE Trans. Med. Imaging 29(1), 12–18 (2009)

    Article  Google Scholar 

  12. Knopp, T., Erbe, M., Sattel, T.F., Biederer, S., Buzug, T.M.: A Fourier slice theorem for magnetic particle imaging using a field-free line. Inverse Probl. 27(9), 095004 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bente, K., Weber, M., Graeser, M., Sattel, T.F., Erbe, M., Buzug, T.M.: Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging. IEEE Trans. Med. Imaging 34(2), 644–651 (2015)

    Article  Google Scholar 

  14. Ilbey, S., Top, C.B., Güngör, A., Çukur, T., Saritas, E.U., Güven, H.E.: Comparison of system-matrix-based and projection-based reconstructions for field free line magnetic particle imaging. Int. J. Magn. Part. Imaging 3(1), 1–8 (2017)

    Google Scholar 

  15. Top, C.B., Güngör, A.: Tomographic field free line magnetic particle imaging with an open-sided scanner configuration. IEEE Trans. Med. Imaging 39(12), 4164–4173 (2020)

    Article  Google Scholar 

  16. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971. IEEE (2009)

  17. Richardson, W.H.: Bayesian-based iterative method of image restoration. JoSA 62(1), 55–59 (1972)

    Article  Google Scholar 

  18. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974)

    Article  Google Scholar 

  19. Knopp, T., Buzug, T.M.: Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Springer-Verlag, Berlin (2012)

    Book  Google Scholar 

  20. Erbe, M.: Field Free Line Magnetic Particle Imaging. Springer-Verlag, Berlin (2014)

    Book  Google Scholar 

  21. Bracewell, R.N., Riddle, A.C.: Inversion of fan-beam scans in radio astronomy. Astrophys. J. 150, 427 (1967)

    Article  Google Scholar 

  22. Ayers, G., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13(7), 547–549 (1988)

    Article  Google Scholar 

  23. Yorulmaz, O., Demirel, O.B., Muslu, Y., Çukur, T., Saritas, E.U., Çetin, A.E.: A blind deconvolution technique based on projection onto convex sets for magnetic particle imaging. arXiv preprint arXiv:1705.07506v3 (2020)

  24. Grüttner, M., Knopp, T., Franke, J., Heidenreich, M., Rahmer, J., Halkola, A., Kaethner, C., Borgert, J., Buzug, T.M.: On the formulation of the image reconstruction problem in magnetic particle imaging. Biomed. Tech. 58(6), 583–591 (2013)

    Article  Google Scholar 

  25. Gungor, A., Askin, B., Soydan, D.A., Saritas, E.U., Top, C.B., Çukur, T.: TranSMS: Transformers for super-resolution calibration in magnetic particle imaging. arXiv:2111.02163 (2021)

  26. Karczmarz, S.: Angenaherte auflosung von systemen linearer glei-chungen. Bull. Int. Acad. Pol. Sic. Let. Cl. Sci. Math. Nat. 355–357 (1937)

  27. Dax, A.: On row relaxation methods for large constrained least squares problems. SIAM J. Sci. Comput. 14(3), 570–584 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Storath, M., Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., Weinmann, A.: Edge preserving and noise reducing reconstruction for magnetic particle imaging. IEEE Trans. Med. Imaging 36(1), 74–85 (2016)

    Article  Google Scholar 

  29. Them, K., Kaul, M.G., Jung, C., Hofmann, M., Mummert, T., Werner, F., Knopp, T.: Sensitivity enhancement in magnetic particle imaging by background subtraction. IEEE Trans. Med. Imaging 35(3), 893–900 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damla Alptekin Soydan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, B., Soydan, D.A., Güngör, A. et al. Inverse Radon transform-based reconstruction with an open-sided magnetic particle imaging prototype. SIViP 17, 1563–1570 (2023). https://doi.org/10.1007/s11760-022-02365-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02365-2

Keywords

Navigation