Skip to main content

Advertisement

Log in

Deep Learning for vision systems in Construction 4.0: a systematic review

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Recently, the construction industry has been digitizing its production processes, the so-called Construction 4.0, in allusion to the paradigm of the fourth industrial revolution. The application of Deep Learning in computer vision systems has been highlighted in Construction 4.0. Thus, the main contribution of this work is to present a systematic review of Deep Learning for vision systems under Construction 4.0, considering the most cited and most recent journal articles between 2017 and 2021 from Scopus database. For this, a research method selected and analyzed 76 published papers. Six main points were evaluated in the proposed methodology: study area, computer vision applications, Deep Learning methods, hyperparameter tuning, data augmentation, and future work. The following topics stand out as relevant perspectives and directions for continued advancement in this field of research: improving Deep Learning models, increasing the quality of databases, investigating the generality techniques and optimizing processing capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. http://www.scopus.com.

  2. https://www.acidb.ca/dataset.

References

  1. Forcael, E., Ferrari, I., Opazo-Vega, A., Pulido-Arcas, J.A.: Construction 4.0: a literature review. Sustainability 12(22), 66 (2020)

    Google Scholar 

  2. Nagy, O., Papp, I., Szabó, R.Z.: Construction 4.0 organisational level challenges and solutions. Sustainability 13(21), 1–18 (2021)

    Google Scholar 

  3. Perrier, N., Bled, A., Bourgault, M., Cousin, N., Danjou, C., Pellerin, R., Roland, T.: Construction 4.0: a survey of research trends. J. Inf. Technol. Constr. 25, 416–437 (2020)

    Google Scholar 

  4. Schönbeck, P., Löfsjögård, M., Ansell, A.: Quantitative review of Construction 4.0 technology presence in construction project research. Buildings 10(10), 66 (2020)

    Google Scholar 

  5. Sawhney, A., Riley, M., Irizarry, J.: Construction 4.0: An Innovation Platform for the Built Environment. Routledge, London (2020)

    Google Scholar 

  6. Rey, R.O., de Melo, R.R.S., Costa, D.B.: Design and implementation of a computerized safety inspection system for construction sites using UAS and digital checklists-smart inspecs. Saf. Sci. 143, 105430 (2021)

    Google Scholar 

  7. Ottoni, A.L.C., Novo, M.S., Costa, D.B.: Hyperparameter tuning of convolutional neural networks for building construction image classification. Vis. Comput. 66, 1–15 (2022)

    Google Scholar 

  8. Pang, J., Zhang, H., Zhao, H., Li, L.: Dcsnet: a real-time deep network for crack segmentation. Signal Image Video Process. 16(4), 911–919 (2022)

    Google Scholar 

  9. Cha, Y.-J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017)

    Google Scholar 

  10. Gopalakrishnan, K., Khaitan, S.K., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017)

    Google Scholar 

  11. Kim, H., Kim, H., Hong, Y.W., Byun, H.: Detecting construction equipment using a region-based fully convolutional network and transfer learning. J. Comput. Civ. Eng. 32(2), 04017082 (2018)

    Google Scholar 

  12. Dung, C.V., Anh, L.D.: Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 99, 52–58 (2019)

    Google Scholar 

  13. Li, S., Zhao, X.: Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Adv. Civ. Eng. 6, 66 (2019)

    Google Scholar 

  14. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  15. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  16. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  17. Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M., Van Valen, D.: Deep learning for cellular image analysis. Nat. Methods 16(12), 1233–1246 (2019)

    Google Scholar 

  18. Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., Lin, C.-W.: Deep Learning on image denoising: an overview. Neural Netw. 6, 66 (2020)

    MATH  Google Scholar 

  19. Elgendy, M.: Deep Learning for Vision Systems. Manning Publications (2020)

  20. Kc, K., Yin, Z., Wu, M., Wu, Z.: Evaluation of deep learning-based approaches for Covid-19 classification based on chest X-ray images. Signal Image Video Process. 15(5), 959–966 (2021)

    Google Scholar 

  21. Bolhasani, H., Mohseni, M., Rahmani, A.M.: Deep learning applications for iot in health care: a systematic review. Inform. Med. Unlocked 23, 100550 (2021)

    Google Scholar 

  22. Safayari, A., Bolhasani, H.: Depression diagnosis by deep learning using EEG signals: a systematic review. Med. Nov. Technol. Devices 12, 100102 (2021)

    Google Scholar 

  23. Dorafshan, S., Thomas, R.J., Maguire, M.: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr. Build. Mater. 186, 1031–1045 (2018)

    Google Scholar 

  24. Yang, Z., He, B., Liu, Y., Wang, D., Zhu, G.: Classification of rock fragments produced by tunnel boring machine using convolutional neural networks. Autom. Constr. 125, 103612 (2021)

    Google Scholar 

  25. Jang, Y., Ahn, Y., Kim, H.Y.: Estimating compressive strength of concrete using deep convolutional neural networks with digital microscope images. J. Comput. Civ. Eng. 33(3), 04019018 (2019)

    Google Scholar 

  26. Guo, J., Wang, Q., Li, Y.: Semi-supervised learning based on convolutional neural network and uncertainty filter for façade defects classification. Comput. Aided Civ. Infrastruct. Eng. 36(3), 302–317 (2021)

    Google Scholar 

  27. Majidifard, H., Adu-Gyamfi, Y., Buttlar, W.G.: Deep machine learning approach to develop a new asphalt pavement condition index. Constr. Build. Mater. 247, 118513 (2020)

    Google Scholar 

  28. Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L., Shen, X.: Image-based concrete crack detection in tunnels using deep fully convolutional networks. Constr. Build. Mater. 234, 117367 (2020)

    Google Scholar 

  29. Alipour, M., Harris, D.K., Miller, G.R.: Robust pixel-level crack detection using deep fully convolutional neural networks. J. Comput. Civ. Eng. 33(6), 04019040 (2019)

    Google Scholar 

  30. Chen, J., Kira, Z., Cho, Y.K.: Deep learning approach to point cloud scene understanding for automated scan to 3d reconstruction. J. Comput. Civ. Eng. 33(4), 04019027 (2019)

    Google Scholar 

  31. Crawford, P.S., Al-Zarrad, M.A., Graettinger, A.J., Hainen, A.M., Back, E., Powell, L.: Rapid disaster data dissemination and vulnerability assessment through synthesis of a web-based extreme event viewer and deep learning. Adv. Civ. Eng. 6, 66 (2018)

    Google Scholar 

  32. Dais, D., Bal, I.E., Smyrou, E., Sarhosis, V.: Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Autom. Constr. 125, 103606 (2021)

    Google Scholar 

  33. Kumar, S.S., Abraham, D.M., Jahanshahi, M.R., Iseley, T., Starr, J.: Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks. Autom. Constr. 91, 273–283 (2018)

    Google Scholar 

  34. Park, S., Bang, S., Kim, H., Kim, H.: Patch-based crack detection in black box images using convolutional neural networks. J. Comput. Civ. Eng. 33(3), 04019017 (2019)

    Google Scholar 

  35. Xue, Y., Li, Y.: A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects. Comput. Aided Civ. Infrastruct. Eng. 33(8), 638–654 (2018)

    Google Scholar 

  36. Qin, X., Cui, S., Liu, L., Wang, P., Wang, M., Xin, J.: Prediction of mechanical strength based on deep learning using the scanning electron image of microscopic cemented paste backfill. Adv. Civ. Eng. 6, 66 (2018)

    Google Scholar 

  37. Tong, Z., Gao, J., Zhang, H.: Innovative method for recognizing subgrade defects based on a convolutional neural network. Constr. Build. Mater. 169, 69–82 (2018)

    Google Scholar 

  38. Wang, X., Zhu, Z.: Vision-based hand signal recognition in construction: a feasibility study. Autom. Constr. 125, 103625 (2021)

    Google Scholar 

  39. Yang, Y., Yang, L., Wu, B., Yao, G., Li, H., Robert, S.: Safety prediction using vehicle safety evaluation model passing on long-span bridge with fully connected neural network. Adv. Civ. Eng. 6, 66 (2019)

    Google Scholar 

  40. Ali, R., Cha, Y.-J.: Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer. Constr. Build. Mater. 226, 376–387 (2019)

    Google Scholar 

  41. Bang, S., Park, S., Kim, H., Kim, H.: Encoder-decoder network for pixel-level road crack detection in black-box images. Comput. Aided Civ. Infrastruct. Eng. 34(8), 713–727 (2019)

    Google Scholar 

  42. Bianchi, E., Abbott, A.L., Tokekar, P., Hebdon, M.: Coco-bridge: structural detail data set for bridge inspections. J. Comput. Civ. Eng. 35(3), 04021003 (2021)

    Google Scholar 

  43. Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., Büyüköztürk, O.: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput. Aided Civ. Infrastruct. Eng. 33(9), 731–747 (2018)

    Google Scholar 

  44. Chen, S., Demachi, K.: Towards on-site hazards identification of improper use of personal protective equipment using deep learning-based geometric relationships and hierarchical scene graph. Autom. Constr. 125, 103619 (2021)

    Google Scholar 

  45. Cheng, J.C., Wang, M.: Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Autom. Constr. 95, 155–171 (2018)

    Google Scholar 

  46. Deng, G., Zhou, Z., Chu, X., Shao, S.: Identification of behavioral features of bridge structure based on static image sequences. Adv. Civ. Eng. 6, 66 (2020)

    Google Scholar 

  47. Ding, L., Fang, W., Luo, H., Love, P.E., Zhong, B., Ouyang, X.: A deep hybrid learning model to detect unsafe behavior: integrating convolution neural networks and long short-term memory. Autom. Constr. 86, 118–124 (2018)

    Google Scholar 

  48. Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., Rose, T.M., An, W.: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos. Autom. Constr. 85, 1–9 (2018)

    Google Scholar 

  49. Fang, W., Ding, L., Luo, H., Love, P.E.: Falls from heights: a computer vision-based approach for safety harness detection. Autom. Constr. 91, 53–61 (2018)

    Google Scholar 

  50. Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Comput. Aided Civ. Infrastruct. Eng. 33(9), 748–768 (2018)

    Google Scholar 

  51. Gulgec, N.S., Takáč, M., Pakzad, S.N.: Convolutional neural network approach for robust structural damage detection and localization. J. Comput. Civ. Eng. 33(3), 04019005 (2019)

    Google Scholar 

  52. Guo, F., Qian, Y., Shi, Y.: Real-time railroad track components inspection based on the improved yolov4 framework. Autom. Constr. 125, 103596 (2021)

    Google Scholar 

  53. Guo, F., Qian, Y., Wu, Y., Leng, Z., Yu, H.: Automatic railroad track components inspection using real-time instance segmentation. Comput. Aided Civ. Infrastruct. Eng. 36(3), 362–377 (2021)

    Google Scholar 

  54. Nhat-Duc, H., Nguyen, Q.-L., Tran, V.-D.: Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom. Constr. 94, 203–213 (2018)

    Google Scholar 

  55. Hoang, N.-D., Nguyen, Q.-L.: A novel approach for automatic detection of concrete surface voids using image texture analysis and history-based adaptive differential evolution optimized support vector machine. Adv. Civ. Eng. 6, 66 (2020)

    Google Scholar 

  56. Kang, D., Cha, Y.-J.: Autonomous uavs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Comput. Aided Civ. Infrastruct. Eng. 33(10), 885–902 (2018)

    Google Scholar 

  57. Kim, D., Liu, M., Lee, S., Kamat, V.R.: Remote proximity monitoring between mobile construction resources using camera-mounted uavs. Autom. Constr. 99, 168–182 (2019)

    Google Scholar 

  58. Kolar, Z., Chen, H., Luo, X.: Transfer learning and deep convolutional neural networks for safety guardrail detection in 2d images. Autom. Constr. 89, 58–70 (2018)

    Google Scholar 

  59. Li, Y., Zhang, H., Wang, S., Wang, H., Li, J.: Image-based underwater inspection system for abrasion of stilling basin slabs of dam. Adv. Civ. Eng. 6, 66 (2019)

    Google Scholar 

  60. Li, Y., Wei, H., Han, Z., Huang, J., Wang, W.: Deep learning-based safety helmet detection in engineering management based on convolutional neural networks. Adv. Civ. Eng. 6, 66 (2020)

    Google Scholar 

  61. Li, S., Gu, X., Xu, X., Xu, D., Zhang, T., Liu, Z., Dong, Q.: Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm. Constr. Build. Mater. 273, 121949 (2021)

    Google Scholar 

  62. Lin, J.J., Ibrahim, A., Sarwade, S., Golparvar-Fard, M.: Bridge inspection with aerial robots: automating the entire pipeline of visual data capture, 3d mapping, defect detection, analysis, and reporting. J. Comput. Civ. Eng. 35(2), 04020064 (2021)

    Google Scholar 

  63. Martinez, P., Barkokebas, B., Hamzeh, F., Al-Hussein, M., Ahmad, R.: A vision-based approach for automatic progress tracking of floor paneling in offsite construction facilities. Autom. Constr. 125, 103620 (2021)

    Google Scholar 

  64. Pan, Z., Yang, J., Wang, X.-E., Wang, F., Azim, I., Wang, C.: Image-based surface scratch detection on architectural glass panels using deep learning approach. Constr. Build. Mater. 282, 122717 (2021)

    Google Scholar 

  65. Park, J.A., Yeum, C.M., Hrynyk, T.D.: Learning-based image scale estimation using surface textures for quantitative visual inspection of regions-of-interest. Comput. Aided Civ. Infrastruct. Eng. 36(2), 227–241 (2021)

    Google Scholar 

  66. Park, S., Baek, F., Sohn, J., Kim, H.: Computer vision-based estimation of flood depth in flooded-vehicle images. J. Comput. Civ. Eng. 35(2), 04020072 (2021)

    Google Scholar 

  67. Peng, X., Zhong, X., Zhao, C., Chen, Y.F., Zhang, T.: The feasibility assessment study of bridge crack width recognition in images based on special inspection UAV. Adv. Civ. Eng. 6, 66 (2020)

    Google Scholar 

  68. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., Omata, H.: Road damage detection and classification using deep neural networks with smartphone images. Comput. Aided Civ. Infrastruct. Eng. 33(12), 1127–1141 (2018)

    Google Scholar 

  69. Tong, Z., Gao, J., Zhang, H.: Recognition, location, measurement, and 3d reconstruction of concealed cracks using convolutional neural networks. Constr. Build. Mater. 146, 775–787 (2017)

    Google Scholar 

  70. Wei, W., Ding, L., Luo, H., Li, C., Li, G.: Automated bughole detection and quality performance assessment of concrete using image processing and deep convolutional neural networks. Constr. Build. Mater. 281, 122576 (2021)

    Google Scholar 

  71. Wijnands, J.S., Zhao, H., Nice, K.A., Thompson, J., Scully, K., Guo, J., Stevenson, M.: Identifying safe intersection design through unsupervised feature extraction from satellite imagery. Comput. Aided Civ. Infrastruct. Eng. 36(3), 346–361 (2021)

    Google Scholar 

  72. Xiao, B., Kang, S.-C.: Development of an image data set of construction machines for deep learning object detection. J. Comput. Civ. Eng. 35(2), 05020005 (2021)

    Google Scholar 

  73. Xiao, B., Kang, S.-C.: Vision-based method integrating deep learning detection for tracking multiple construction machines. J. Comput. Civ. Eng. 35(2), 04020071 (2021)

    Google Scholar 

  74. Xu, Y., Shen, X., Lim, S.: Cordet: corner-aware 3d object detection networks for automated scan-to-bim. J. Comput. Civ. Eng. 35(3), 04021002 (2021)

    Google Scholar 

  75. Yao, G., Wei, F., Yang, Y., Sun, Y.: Deep-learning-based bughole detection for concrete surface image. Adv. Civ. Eng. 6, 66 (2019)

    Google Scholar 

  76. Luo, X., Li, H., Cao, D., Dai, F., Seo, J., Lee, S., et al.: Recognizing diverse construction activities in site images via relevance networks of construction-related objects detected by convolutional neural networks. J. Comput. Civ. Eng. 32(3), 04018012 (2018)

    Google Scholar 

  77. Yin, X., Ma, T., Bouferguene, A., Al-Hussein, M.: Automation for sewer pipe assessment: Cctv video interpretation algorithm and sewer pipe video assessment (spva) system development. Autom. Constr. 125, 103622 (2021)

    Google Scholar 

  78. Yu, Y., Li, H., Umer, W., Dong, C., Yang, X., Skitmore, M., Wong, A.Y.: Automatic biomechanical workload estimation for construction workers by computer vision and smart insoles. J. Comput. Civ. Eng. 33(3), 04019010 (2019)

    Google Scholar 

  79. Zhang, A., Wang, K.C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q., Chen, C.: Automated pixel-level pavement crack detection on 3d asphalt surfaces using a deep-learning network. Comput. Aided Civ. Infrastruct. Eng. 32(10), 805–819 (2017)

  80. Zhang, A., Wang, K.C., Fei, Y., Liu, Y., Tao, S., Chen, C., Li, J.Q., Li, B.: Deep learning-based fully automated pavement crack detection on 3d asphalt surfaces with an improved cracknet. J. Comput. Civ. Eng. 32(5), 04018041 (2018)

    Google Scholar 

  81. Zhang, J., Zi, L., Hou, Y., Wang, M., Jiang, W., Deng, D.: A deep learning-based approach to enable action recognition for construction equipment. Adv. Civ. Eng. 6, 66 (2020)

    Google Scholar 

  82. Khilji, T.N., Lopes Amaral Loures, L., Rezazadeh Azar, E.: Distress recognition in unpaved roads using unmanned aerial systems and deep learning segmentation. J. Comput. Civ. Eng. 35(2), 04020061 (2021)

  83. Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using u-net fully convolutional networks. Autom. Constr. 104, 129–139 (2019)

    Google Scholar 

  84. Park, G., Lee, M., Jang, H., Kim, C.: Thermal anomaly detection in walls via cnn-based segmentation. Autom. Constr. 125, 103627 (2021)

    Google Scholar 

  85. Pi, Y., Nath, N.D., Behzadan, A.H.: Detection and semantic segmentation of disaster damage in uav footage. J. Comput. Civ. Eng. 35(2), 04020063 (2021)

    Google Scholar 

  86. Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., Yang, X.: Automatic pixel-level crack detection and measurement using fully convolutional network. Comput. Aided Civ. Infrastruct. Eng. 33(12), 1090–1109 (2018)

    Google Scholar 

  87. Zhou, S., Song, W.: Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Autom. Constr. 125, 103605 (2021)

    Google Scholar 

  88. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of International Conference on Machine Learning 2014 (ICML 2014), pp. 754–762 (2014)

  89. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning: Methods, Systems, Challenges. Springer, Berlin (2018)

    Google Scholar 

  90. Sajedi, S.O., Liang, X.: Uncertainty-assisted deep vision structural health monitoring. Comput. Aided Civ. Infrastruct. Eng. 36(2), 126–142 (2021)

    Google Scholar 

  91. Valikhani, A., Jaberi Jahromi, A., Pouyanfar, S., Mantawy, I.M., Azizinamini, A.: Machine learning and image processing approaches for estimating concrete surface roughness using basic cameras. Comput. Aided Civ. Infrastruct. Eng. 36(2), 213–226 (2021)

    Google Scholar 

  92. Ottoni, A.L.C., Amorim, R.M., Novo, M.S., Costa, D.B.: Tuning of data augmentation hyperparameters in Deep Learning to building construction image classification with small datasets. Int. J. Mach. Learn. Cybernet. 66, 1–16 (2022)

    Google Scholar 

  93. Chollet, F., Allaire, J.J.: Deep Learning With R. Manning Publications (2018)

  94. Tong, Z., Wang, Z., Wang, X., Ma, Y., Guo, H., Liu, C.: Characterization of hydration and dry shrinkage behavior of cement emulsified asphalt composites using deep learning. Constr. Build. Mater. 274, 121898 (2021)

    Google Scholar 

  95. Bianchi, E., Abbott, A.L., Tokekar, P., Hebdon, M.: Coco-bridge: Common Objects in Context Dataset for Structural Detail Detection of Bridges (2021)

  96. Shen, J., Xiong, X., Li, Y., He, W., Li, P., Zheng, X.: Detecting safety helmet wearing on construction sites with bounding-box regression and deep transfer learning. Comput. Aided Civ. Infrastruct. Eng. 36(2), 180–196 (2021)

    Google Scholar 

  97. Xiao, B., Kang, S.-C.: Acid—alberta construction image dataset. https://www.acidb.ca/ (2021)

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - Chamada CNPq/MCTI/FNDCT \(\hbox {N}^\circ \) 18/2021 - UNIVERSAL.

Author information

Authors and Affiliations

Authors

Contributions

AO: conceptualization, methodology, writing, review and editing. MN: conceptualization, writing, review, editing and supervision. DC: conceptualization, review and supervision. All authors contributed to the final manuscript.

Corresponding author

Correspondence to André L. C. Ottoni.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottoni, A.L.C., Novo, M.S. & Costa, D.B. Deep Learning for vision systems in Construction 4.0: a systematic review. SIViP 17, 1821–1829 (2023). https://doi.org/10.1007/s11760-022-02393-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02393-y

Keywords

Navigation