Skip to main content
Log in

LPOA-DRN: Deep learning based feature fusion and optimization enabled Deep Residual Network for classification of Motor Imagery EEG signals

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this research, the classification method for MI-based EEG signals has been developed using the Lion Political Optimization Algorithm-based Deep Residual Network (LPOA-based DRN) to address these issues. The proposed model employs the technique of data augmentation to generate the best classification outcomes with additional training examples. By altering the training data, the developed strategy improves efficiency in terms of specificity, accuracy, and sensitivity with values of 0.921, 0.904, and 0.866.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Venkatachalam, K., Devipriya, A., Maniraj, J., Sivaram, M., Ambikapathy, A., Iraj, S.A.: A novel method of motor imagery classification using EEG signal. Artif. Intell. Med. 103, 101787 (2020)

    Article  Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)

    Article  Google Scholar 

  3. Ma, Y., Ding, X., She, Q., Luo, Z., Potter, T., Zhang, Y.: Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Computational and mathematical methods in medicine (2016).

  4. Zheng, X., Chen, W., You, Y., Jiang, Y., Li, M., Zhang, T.: Ensemble deep learning for automated visual classification using EEG signals. Pattern Recogn. 102, 107147 (2020)

    Article  Google Scholar 

  5. El Bahy, M.M., Hosny, M., Mohamed, W.A., Ibrahim, S.: EEG signal classification using neural network and support vector machine in brain computer interface. In: Proceedings of International Conference on Advanced Intelligent Systems and Informatics pp. 246–256 (2016)

  6. Chen, Z., Lu, G., Xie, Z., Shang, W.: A unified framework and method for EEG-based early epileptic seizure detection and epilepsy diagnosis. IEEE Access 8, 20080–20092 (2020)

    Article  Google Scholar 

  7. Mehmood, R.M., Du, R., Lee, H.J.: Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors. Ieee Access 5, 14797–14806 (2017)

    Article  Google Scholar 

  8. Rabcan, J., Levashenko, V., Zaitseva, E., Kvassay, M.: Review of methods for EEG signal classification and development of new fuzzy classification-based approach. IEEE Access 8, 189720–189734 (2020)

    Article  Google Scholar 

  9. Fan, M., Chou, C.A.: Detecting abnormal pattern of epileptic seizures via temporal synchronization of EEG signals. IEEE Trans. Biomed. Eng. 66(3), 601–608 (2018)

    Article  Google Scholar 

  10. Jiajie, L., Narasimhan, K., Elamaran, V., Arunkumar, N., Solarte, M., Ramirez-Gonzalez, G.: Clinical decision support system for alcoholism detection using the analysis of EEG signals. IEEE Access 6, 61457–61461 (2018)

    Article  Google Scholar 

  11. Remmiya, R., Abisha, C.: Artifacts removal in EEG SIGNAL USing a NARX model based CS learning algorithm. Multimed Res 1(1), 1–8 (2018)

    Google Scholar 

  12. Quazi, M.H., Kahalekar, S.G.: Adaptive filtering in EEG signal for artifacts removal using learning algorithm. J. Netw. Commun. Syst. 2(2), 1–9 (2019)

    Google Scholar 

  13. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2017)

    Article  Google Scholar 

  14. Xu, G., Shen, X., Chen, S., Zong, Y., Zhang, C., Yue, H., Liu, M., Chen, F., Che, W.: A deep transfer convolutional neural network framework for EEG signal classification. IEEE Access 7, 112767–112776 (2019)

    Article  Google Scholar 

  15. Liu, Y., Wei, S., Zhang, S., Liu, F., Li, J., Liu, C.: Signal quality index-based two-step method for heart rate estimation by combining electrocardiogram and arterial blood pressure signals. J. Med. Imaging Health Inf. 8(7), 1502–1507 (2018)

    Article  Google Scholar 

  16. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  17. Huang, C., Tian, G., Lan, Y., Peng, Y., Ng, E.Y.K., Hao, Y., Cheng, Y., Che, W.: A new pulse coupled neural network (PCNN) for brain medical image fusion empowered by shuffled frog leaping algorithm. Front. Neurosci. 13, 210 (2019)

    Article  Google Scholar 

  18. Yang, H., Sakhavi, S., Ang, K.K. and Guan, C.: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification. In Proceedings of 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2620–2623 (2015)

  19. Pourbabaee, B., Roshtkhari, M.J., Khorasani, K.: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2095–2104 (2018)

    Article  Google Scholar 

  20. Gao, Z., Dang, W., Liu, M., Guo, W., Ma, K., Chen, G.: Classification of EEG signals on VEP-based BCI systems with broad learning. IEEE Trans. Syst. Man Cybern. Syst. (2020)

  21. Cecotti, H.: A time–frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses. Pattern Recogn. Lett. 32(8), 1145–1153 (2011)

    Article  Google Scholar 

  22. Lu, N., Li, T., Ren, X., Miao, H.: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 566–576 (2016)

    Article  Google Scholar 

  23. Sadiq, M.T., Yu, X., Yuan, Z., Fan, Z., Rehman, A.U., Li, G., Xiao, G.: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform. IEEE Access 7, 127678–127692 (2019)

    Article  Google Scholar 

  24. Al-Fahoum, A.S., Al-Fraihat, A.A.: Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. International Scholarly Research Notices (2014)

  25. Deng, G., Cahill, L.W.: An adaptive Gaussian filter for noise reduction and edge detection. In: IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, pp. 1615–1619 (1993).

  26. Geethu, V., Santhoshkumar, S.: An efficient FPGA realization of seizure detection from EEG signal using wavelet transform and statistical features. IETE J. Res. 66(3), 315–325 (2020)

    Article  Google Scholar 

  27. Buriro, A.B., Shoorangiz, R., Weddell, S.J., Jones, R.D.: Predicting microsleep states using EEG inter-channel relationships. IEEE Trans. Neural Syst. Rehabil. Eng. 26(12), 2260–2269 (2018)

    Article  Google Scholar 

  28. Usman, S.M., Khalid, S., Akhtar, R., Bortolotto, Z., Bashir, Z., Qiu, H.: Using scalp EEG and intracranial EEG signals for predicting epileptic seizures: Review of available methodologies. Seizure 71, 258–269 (2019)

    Article  Google Scholar 

  29. Bablani, A., Edla, D.R., Dodia, S.: Classification of EEG data using k-nearest neighbor approach for concealed information test. Proc. Comput. Sci. 143, 242–249 (2018)

    Article  Google Scholar 

  30. Lawhern, V., Hairston, W.D., McDowell, K., Westerfield, M., Robbins, K.: Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. J. Neurosci. Methods 208(2), 181–189 (2012)

    Article  Google Scholar 

  31. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5(4), 537–550 (1994)

    Article  Google Scholar 

  32. Yu, J., Liu, G.: Knowledge extraction and insertion to deep belief network for gearbox fault diagnosis. Knowl.-Based Syst. 197, 105883 (2020)

    Article  Google Scholar 

  33. Chen, Z., Chen, Y., Wu, L., Cheng, S., Lin, P.: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energy Convers. Manage. 198, 111793 (2019)

    Article  Google Scholar 

  34. Askari, Q., Younas, I., Saeed, M.: Political optimizer: a novel socio-inspired meta-heuristic for global optimization. Knowl.-Based Syst. 195, 105709 (2020)

    Article  Google Scholar 

  35. Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3(1), 24–36 (2016)

    Google Scholar 

  36. A large EEG BCI mental imagery dataset taken from, “https://figshare.com/collections/A_large_electroencephalographic_motor_imagery_dataset_for_electroencephalographic_brain_computer_interfaces/3917698. Accessed June 2021.

  37. A DEAP dataset was taken from, https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html.

  38. Praveena, K., Thulasi Priya, C.: Monitoring of pest insect traps using image sensors & dspic. Int. J. Eng. Trends Technol. 4(2), 4088–4093 (2013)

    Google Scholar 

  39. Darwante, N.K., Praveena, K., Venkatesh, U.S., Sahoo, N.K, Ramanan, S.V., Mariam Bee, M.K.: Brain tumor detection using ANFIS classifier and segmentation. Int. J. Health Sci. (2022)

  40. Asderah, D., Kalkur, T.S.: FEM based modeling of tunable BAW resonators with Ba0.8Sr0.2TiO3. In: 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM), pp. 15–18 (2017)

  41. Rupapara, V., Narra, M., Gunda, N.K., Gandhi, S., Thipparthy, K.R.: Maintaining social distancing in pandemic using smartphones with acoustic waves. IEEE Trans. Comput. Soc. Syst. 9(2), 605–611 (2022)

    Article  Google Scholar 

  42. Fusini, F., Zanchini, F.: Mini-open surgical treatment of an ex professional volleyball player with unresponsive Hoffa’s disease. Minerva Ortop Traumatol 67(4), 192–194 (2016)

    Google Scholar 

  43. Al-Saedi, K., Al-Emran, M., Abusham, E., El Rahman, S.A.: Mobile payment adoption: a systematic review of the UTAUT model. In: 2019 International Conference on Fourth Industrial Revolution (ICFIR), 2019, pp. 1–5 (2019)

  44. Shende, D.K., Angal, Y.S., Patil, S.C.: An iterative crowwhale-based optimization model for energy-aware multicast routing in IoT. Int. J. Inf. Secur. Priv. 16(1), 1–24 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri M.S.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M.S, G., Grace, K.S.V. LPOA-DRN: Deep learning based feature fusion and optimization enabled Deep Residual Network for classification of Motor Imagery EEG signals. SIViP 17, 2167–2175 (2023). https://doi.org/10.1007/s11760-022-02431-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02431-9

Keywords

Navigation