Skip to main content

Advertisement

Log in

ECU-Net: multi-scale salient boundary detection and contrast feature enhancement U-Net for breast ultrasound image segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

U-Net and its variants show excellent performance in medical image segmentation. However, due to the information loss caused by down-sampling and the blurry boundary of the ultrasound images itself, it is hard to extract and recover boundary information. Additionally, due to the intensity similarity and low contrast between tumor and non-tumor regions in breast ultrasound images, obtaining discriminative features is difficult. So we propose an optimized U-Net breast ultrasound image segmentation model ECU-Net. Firstly, a multi-scale salient boundary detection module is proposed to enhance the model’s perception of tumor boundaries. Secondly, a contrast feature enhancement module is proposed to highlight the otherness between tumor and normal tissues. Then we combine the two modules to optimize skip-connection through boundaries completion and contrast information enhancement. Exhaustive experiments are conducted on two publicly available datasets, and experimental results show our ECU-Net performs better than U-Net and its classic variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wild, C., Weiderpass, E., Stewart, B.W.: World Cancer Report-Cancer Research for Cancer Prevention. Premium Official News (2020)

  2. Shi, J., Vakanski, A., Xian, M., Ding, J., Ning, C.: EMT-NET: efficient multitask network for computer-aided diagnosis of breast cancer. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2022). https://doi.org/10.1109/ISBI52829.2022.9761438

  3. Wang, Z., Luo, Y., Xin, J., Zhang, H., Qu, L., Wang, Z., Yao, Y., Zhu, W., Wang, X.: Computer-aided diagnosis based on extreme learning machine: a review. IEEE Access 8, 141657–141673 (2020). https://doi.org/10.1109/ACCESS.2020.3012093

    Article  Google Scholar 

  4. Fujita, H.: AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol. Phys. Technol. 13(1), 6–19 (2020)

    Article  Google Scholar 

  5. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020)

    Article  Google Scholar 

  6. Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11976–11986 (2022). https://doi.org/10.48550/arXiv.2201.03545

  7. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. IET Image Proc. 16(5), 1243–1267 (2022)

    Article  Google Scholar 

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

  9. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241. Springer (2015)

  10. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  11. Vianna, P., Farias, R., Pereira, W.: Performance of the SegNet in the Segmentation of Breast Ultrasound Lesions. In: 2021 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), pp. 1–4 (2021). IEEE. https://doi.org/10.1109/GMEPE/PAHCE50215.2021.9434877

  12. Kumar, P., Nagar, P., Arora, C., Gupta, A.: U-segnet: fully convolutional neural network based automated brain tissue segmentation tool. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3503–3507 (2018). IEEE. https://doi.org/10.1109/ICIP.2018.8451295

  13. Shen, T., Gou, C., Wang, J., Wang, F.-Y.: Simultaneous segmentation and classification of mass region from mammograms using a mixed-supervision guided deep model. IEEE Signal Process. Lett. 27, 196–200 (2019). https://doi.org/10.1109/LSP.2019.2963151

    Article  Google Scholar 

  14. Shen, T., Wang, J., Gou, C., Wang, F.-Y.: Hierarchical fused model with deep learning and type-2 fuzzy learning for breast cancer diagnosis. IEEE Trans. Fuzzy Syst. 28(12), 3204–3218 (2020). https://doi.org/10.1109/TFUZZ.2020.3013681

    Article  Google Scholar 

  15. Ilesanmi, A.E., Chaumrattanakul, U., Makhanov, S.S.: Methods for the segmentation and classification of breast ultrasound images: a review. J. Ultrasound 24(4), 367–382 (2021). https://doi.org/10.1007/s40477-020-00557-5

    Article  Google Scholar 

  16. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S, vol. 11045, pp. 3–11 (2018)

  17. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019). https://doi.org/10.1109/TMI.2019.2959609

    Article  Google Scholar 

  18. Huang, H., Lin, L., Tong, R., Hu, H., Wu, J.: UNet 3+: a full-scale connected UNet for medical image segmentation. arXiv (2020)

  19. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017). https://doi.org/10.48550/arXiv.1608.06993

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  21. Jafari, M., Auer, D., Francis, S., Garibaldi, J., Chen, X.: DRU-Net: an efficient deep convolutional neural network for medical image segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1144–1148 (2020). IEEE. https://doi.org/10.1109/ISBI45749.2020.9098391

  22. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018). https://doi.org/10.1109/LGRS.2018.2802944

    Article  Google Scholar 

  23. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.-A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018). https://doi.org/10.1109/TMI.2018.2845918

    Article  Google Scholar 

  24. Yin, P., Yuan, R., Cheng, Y., Wu, Q.: Deep guidance network for biomedical image segmentation. IEEE Access 8, 116106–116116 (2020). https://doi.org/10.1109/ACCESS.2020.3002835

    Article  Google Scholar 

  25. Ning, Z., Zhong, S., Feng, Q., Chen, W., Zhang, Y.: SMU-Net: saliency-guided morphology-aware U-Net for breast lesion segmentation in ultrasound image. IEEE Trans. Med. Imaging 41(2), 476–490 (2021). https://doi.org/10.1109/TMI.2021.3116087

    Article  Google Scholar 

  26. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  27. Li, X., Jiang, Y., Li, M., Yin, S.: Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans. Ind. Inf. 17(3), 1958–1967 (2020). https://doi.org/10.1109/TII.2020.2993842

  28. Gu, R., Wang, G., Song, T., Huang, R., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., Zhang, S.: CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans. Med. Imaging 40(2), 699–711 (2020). https://doi.org/10.1109/TMI.2020.3035253

    Article  Google Scholar 

  29. Li, C., Tan, Y., Chen, W., Luo, X., Li, F.: ANU-Net: attention-based Nested U-Net to exploit full resolution features for medical image segmentation. Comput. Graph. (2020). https://doi.org/10.1016/j.cag.2020.05.003

    Article  Google Scholar 

  30. Zuo, Q., Chen, S., Wang, Z.: R2AU-Net: attention recurrent residual convolutional neural network for multimodal medical image segmentation. Secur. Commun. Netw. 2021, 1–10 (2021). https://doi.org/10.1155/2021/6625688

  31. Xu, M., Huang, K., Chen, Q., Qi, X.: Mssa-Net: Multi-Scale Self-Attention Network For Breast Ultrasound Image Segmentation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 827–831 (2021). IEEE. https://doi.org/10.1109/ISBI48211.2021.9433899

  32. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: Criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, KR, pp. 603–612 (2019)

  33. Valanarasu, J.M.J., Patel, V.M.: UNeXt: MLP-based Rapid Medical Image Segmentation Network. arXiv preprint arXiv:2203.04967 (2022)

  34. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). arXiv:1709.01507

  35. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  36. Yap, M.H., Pons, G., Martí, J., Ganau, S., Sentis, M., Zwiggelaar, R., Davison, A.K., Marti, R.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2017). https://doi.org/10.1109/JBHI.2017.2731873

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Below the title are the first, second, and third authors and corresponding authors, in order of size of contribution. Cailing Han made substantial contributions to the conception or design of the work. Xi Huang and Yimin Zhang were responsible for the acquisition, analysis of data, study supplementation and manuscript examination. Minghui Wang took overall control of the study and made constructive comments on the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Minghui Wang.

Ethics declarations

Consent for publication

The paper is not pending or published in another journal, and all the authors have read the full text and agreed to submit it to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Huang, X., Zhang, Y. et al. ECU-Net: multi-scale salient boundary detection and contrast feature enhancement U-Net for breast ultrasound image segmentation. SIViP 17, 2287–2295 (2023). https://doi.org/10.1007/s11760-022-02445-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02445-3

Keywords