Skip to main content

Advertisement

Log in

1D-convolutional neural network approach and feature extraction methods for automatic detection of schizophrenia

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Schizophrenia is a complex psychiatric disorder characterized by delusions, hallucinations, disorganized speech, mood disturbances, and abnormal behavior. Early diagnosis of schizophrenia depends on the manifestation of the disorder, its symptoms are complex, heterogeneous and cannot be clearly separated from other neurological categories. Therefore, its early diagnosis is quite difficult. An objective, effective and simple diagnostic model and procedure are essential for diagnosing schizophrenia. Electroencephalography (EEG)-based models are a strong candidate to overcome these limits. In this study, we proposed an EEG-based solution for the diagnosis of schizophrenia using 1D-convolutional neural network deep learning approach and multitaper method. Firstly, the raw EEG signals were segmented and denoised using multiscale principal component analysis. Then, three different feature sets were extracted using leading feature extraction methods such as periodogram, welch, and multitaper. The performance of each feature extraction method was compared. Finally, classification performance of support vector machine, decision trees, k-nearest neighbors, and 1D-convolutional neural network algorithms were tested according to model evaluation criteria. The highest performance was obtained with the multitaper and 1D-convolutional neural network approach, and the highest accuracy was 98.76%. The results of the model were found to be 0.991 sensitivity, 0.984 precision, 0.983 specificity, 0.975 Matthews correlation coefficient, 0.987 f1-score, and 0.975 kappa statistic. This study presents the multitaper and 1D-convolutional neural network approach framework for the first time in the diagnosis of schizophrenia. Moreover, this study achieved satisfactorily high classification performance for the diagnosis of schizophrenia compared to methods in the relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The EEG dataset: “Olejarczyk, E., Jernajczyk, W.: Graph-based analysis of brain connectivity in schizophrenia. PloS One, (2017). https://doi.org/10.1371/journal.pone.0188629 Data from: https://doi.org/10.18150/repod.0107441” [17].

References

  1. Galdino, L.B., Fernandes, T., Schmidt, K.E., Santos, N.A.: Altered brain connectivity during visual stimulation in schizophrenia. Exp. Brain Res. (2022). https://doi.org/10.1007/s00221-022-06495-4

    Article  Google Scholar 

  2. Goshvarpour, A., Goshvarpour, A.: Schizophrenia diagnosis by weighting the entropy measures of the selected EEG channel. J. Med. Biol. Eng. (2022). https://doi.org/10.1007/s40846-022-00762-z

    Article  Google Scholar 

  3. Ko, D.W., Yang, J.J.: EEG-Based schizophrenia diagnosis through time series image conversion and deep learning. Electronics (2022). https://doi.org/10.3390/electronics11142265

    Article  Google Scholar 

  4. Whiteford, H.A., Ferrari, A.J., Degenhardt, L., Feigin, V., Vos, T.: The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0116820

    Article  Google Scholar 

  5. Owens, S.J., Murphy, C.E., Purves-Tyson, T.D., Weickert, T.W., Shannon Weickert, C.: Considering the role of adolescent sex steroids in schizophrenia. J. Neuroendocrinol. (2017). https://doi.org/10.1111/jne.12538

    Article  Google Scholar 

  6. Kahn, R., Sommer, I.E., Murray, R.M., Lindenberg, A.M., Weinberger, D.R., Cannon, T.D., O’Donovan, M., Correll, C.U., Kane, J.M., van Os, J., Insel, T.R.: Schizophrenia. Nat Rev. Dis. Primers (2015). https://doi.org/10.1038/nrdp.2015.67

    Article  Google Scholar 

  7. Barros, C., Silva, C.A., Pinheiro, A.P.: Advanced EEG-based learning approaches to predict schizophrenia: promises and pitfalls. Artif. Intell. Med. (2021). https://doi.org/10.1016/j.artmed.2021.102039

    Article  Google Scholar 

  8. Jahmunah, V., Oh, S.L., Rajinikanth, V., Ciaccio, E.J., Cheong, K.H., Arunkumar, N., Acharya, U.R.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. (2019). https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  9. WeiKoh, J.E., Rajinikanth, V., Vicnesh, J., Pham, T.H., Oh, S.L., Yeong, C.H., Sankaranarayanan, M., Kamath, A., Bairy, G.M., Barua, P.D., Cheong, K.H.: Application of local configuration pattern for automated detection of schizophrenia with electroencephalogram signals. Expert. Syst. (2022). https://doi.org/10.1111/exsy.12957

    Article  Google Scholar 

  10. Devia, C., Mayol-Troncoso, R., Parrini, J., Orellana, G., Ruiz, A., Maldonado, P.E., Egaña, J.I.: EEG classification during scene free-viewing for schizophrenia detection. IEEE Trans. Neural Syst. Rehabil. Eng. (2019). https://doi.org/10.1109/TNSRE.2019.2913799

    Article  Google Scholar 

  11. Naira, C.A.T., Alamo, C.J.L.: Classification of people who suffer schizophrenia and healthy people by EEG signals using deep learning. Int. J. Adv. Comput. Sci. Appl. (2019). https://doi.org/10.14569/IJACSA.2019.0101067

    Article  Google Scholar 

  12. Aslan, Z., Akın, M.: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals. Traitement du Signal (2020). https://doi.org/10.18280/ts.370209

    Article  Google Scholar 

  13. Akbari, H., Ghofrani, S., Zakalvand, P., Sadiq, M.T.: Schizophrenia recognition based on the phase space dynamic of EEG signals and graphical features. Biomed. Signal Process. Control (2021). https://doi.org/10.1016/j.bspc.2021.102917

    Article  Google Scholar 

  14. Barros, C., Roach, B., Ford, J.M., Pinheiro, A.P., Silva, C.A.: From sound perception to automatic detection of schizophrenia: an EEG-based deep learning approach. Front Psychiatry. (2022). https://doi.org/10.3389/fpsyt.2021.813460

    Article  Google Scholar 

  15. de Miras, J.R., Ibáñez-Molina, A.J., Soriano, M.F., Iglesias-Parro, S.: Schizophrenia classification using machine learning on resting state EEG signal. Biomed. Signal Process. Control (2023). https://doi.org/10.1016/j.bspc.2022.104233

    Article  Google Scholar 

  16. Aslan, Z., Akin, M.: A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals. Phys. Eng. Sci. Med. (2022). https://doi.org/10.1007/s13246-021-01083-2

    Article  Google Scholar 

  17. Olejarczyk, E., Jernajczyk, W.: Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE (2017). https://doi.org/10.1371/journal.pone.0188629. Data from: https://doi.org/10.18150/repod.0107441.

  18. Skoog, D. A., Holler, F. J., Crouch, S. R.: The signal-to-noise ratio. In: Principles of Instrumental Analysis, 6th edn, pp.110–27. Canada, Thomson Brooks/Cole. (2007)

  19. Mukherjee, A., Kundu, P.K., Das, A.: A differential signal-based fault classification scheme using PCA for long transmission lines. J. Inst. Eng. (India) Ser. B (2021). https://doi.org/10.1007/s40031-020-00529-7

    Article  Google Scholar 

  20. Singh, H.K., Munduri, Y.K., Yadav, A.B., Abhishek, S.T.R.: Distortion measurement to evaluate noise-free EEG signals through wavelet analysis. Int. Res. J. Modern. Eng. Technol. Sci. 4(5), 5686–5693 (2022)

    Google Scholar 

  21. Göker, H.: Automatic detection of migraine disease from EEG signals using bidirectional long-short term memory deep learning model. SIViP (2022). https://doi.org/10.1007/s11760-022-02333-w

    Article  Google Scholar 

  22. Chowdhury, M.S.N., Dutta, A., Robison, M.K., Blais, C., Brewer, G.A., Bliss, D.W.: Deep neural network for visual stimulus-based reaction time estimation using the periodogram of single-trial EEG. Sensors (2020). https://doi.org/10.3390/s20216090

    Article  Google Scholar 

  23. Li, M.W., Geng, J., Hong, W.C., Zhang, L.D.: Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion. Nonlinear Dyn. (2019). https://doi.org/10.1016/j.neucom.2019.01.078

    Article  Google Scholar 

  24. Francis, M.N., Keran, M.P., Chetan, R., Krupa, B.N.: EEG-controlled robot navigation using hjorth parameters and welch-psd. Int. J. Intell. Eng. Syst. (2021). https://doi.org/10.22266/ijies2021.0831.21

    Article  Google Scholar 

  25. Güneç, K., Kasim, Ö., Tosun, M., Büyükköroğlu, E.: Estimation of pain threshold from EEG signals of subjects in physical therapy using long-short-term memory deep learning model. Uludağ Univ. J. Fac. Eng. (2021). https://doi.org/10.17482/uumfd.883100

    Article  Google Scholar 

  26. Ifeachor, E.C., Jervis, B.W.: Digital Signal Processing: A Practical Approach. Pearson Education, London (2002)

    Google Scholar 

  27. Wieczorek, M.A., Simons, F.J.: Minimum-variance multitaper spectral estimation on the sphere. J Fourier Anal Appl. (2007). https://doi.org/10.1007/s00041-006-6904-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Shenfield, A., Howarth, M.: A novel deep learning model for the detection and identification of rolling element-bearing faults. Sensors. (2020). https://doi.org/10.3390/s20185112

    Article  Google Scholar 

  29. Benedykciuk, E., Denkowski, M., Dmitruk, K.: Material classification in X-ray images based on multi-scale CNN. SIViP (2021). https://doi.org/10.1007/s11760-021-01859-9

    Article  Google Scholar 

  30. Varga, D., Szirányi, T.: No-reference video quality assessment via pre-trained CNN and LSTM networks. SIViP (2019). https://doi.org/10.1007/s11760-019-01510-8

    Article  Google Scholar 

  31. Salah, K.B., Othmani, M., Kherallah, M.A.: novel approach for human skin detection using convolutional neural network. Vis Comput. (2022). https://doi.org/10.1007/s00371-021-02108-3

    Article  Google Scholar 

  32. Bai, S., Kolter, J. Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv (2018). https://doi.org/10.48550/arXiv.1803.01271

  33. Ullah, I., Hussain, M., Aboalsamh, H.: An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Syst. Appl. (2018). https://doi.org/10.1016/j.eswa.2018.04.021

    Article  Google Scholar 

  34. Ozcanli, A.K., Baysal, M.: Islanding detection in microgrid using deep learning based on 1D CNN and CNN-LSTM networks. Sustain. Energy Grids Netw. (2022). https://doi.org/10.1016/j.segan.2022.100839

    Article  Google Scholar 

  35. Cantor, A.B.: Sample-size calculations for Cohen’s kappa. Psychol. Methods (1996). https://doi.org/10.1037/1082-989X.1.2.150

    Article  Google Scholar 

  36. Buettner, R., Hirschmiller, M., Schlosser, K., Rössle, M., Fernandes, M., Timm, I.J.: High-performance exclusion of schizophrenia using a novel machine learning method on EEG data. In: 2019 IEEE International Conference on E-Health Networking, Application & Services (HealthCom), pp. 1–6. IEEE. (2019). https://doi.org/10.1109/HealthCom46333.2019.9009437

  37. Phang, C.R., Noman, F., Hussain, H., Ting, C.M., Ombao, H.: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns. IEEE J. Biomed. Health Inform. (2019). https://doi.org/10.1109/JBHI.2019.2941222

    Article  Google Scholar 

  38. Racz, F.S., Stylianou, O., Mukli, P., Eke, A.: Multifractal and entropy-based analysis of delta band neural activity reveals altered functional connectivity dynamics in schizophrenia. Front. Syst. Neurosci. (2020). https://doi.org/10.3389/fnsys.2020.00049

    Article  Google Scholar 

  39. Krishnan, P.T., Raj, A.N.J., Balasubramanian, P., Chen, Y.: Schizophrenia detection using multivariate empirical mode decomposition and entropy measures from multichannel EEG signal. Biocybernet. Biomed. Eng. (2020). https://doi.org/10.1016/j.bbe.2020.05.008

    Article  Google Scholar 

  40. Buettner, R., Beil, D., Scholtz, S., Djemai, A.: Development of a machine learning based algorithm to accurately detect schizophrenia based on one-minute EEG recordings. In: Proceedings of the 53rd Hawaii International Conference on System Sciences, pp. 3216–3225 (2020)

  41. Khare, S.K., Bajaj, V., Acharya, U.R.: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals. IEEE Trans. Instrum. Meas. (2021). https://doi.org/10.1109/TIM.2021.3070608

    Article  Google Scholar 

  42. Wu, Y., Xia, M., Wang, X., Zhang, Y.: Schizophrenia detection based on EEG using recurrent auto-encoder framework. arXiv:2207.04262 (2022). https://doi.org/10.48550/arXiv.2207.04262

  43. Keihani, A., Sajadi, S.S., Hasani, M., Ferrarelli, F.: Bayesian optimization of machine learning classification of resting-state EEG microstates in schizophrenia: a proof-of-concept preliminary study based on secondary analysis. Brain Sci. (2022). https://doi.org/10.3390/brainsci12111497

    Article  Google Scholar 

  44. Lillo, E., Mora, M., Lucero, B.: Automated diagnosis of schizophrenia using EEG microstates and deep convolutional neural network. Expert Syst. Appl. (2022). https://doi.org/10.1016/j.eswa.2022.118236

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

HG: Designing concepts of the study, application of data analysis and interpretation, implementation of methods and writing the manuscript.

Corresponding author

Correspondence to Hanife Göker.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göker, H. 1D-convolutional neural network approach and feature extraction methods for automatic detection of schizophrenia. SIViP 17, 2627–2636 (2023). https://doi.org/10.1007/s11760-022-02479-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02479-7

Keywords

Navigation