Skip to main content
Log in

Hybrid anomaly detection method for hyperspectral images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Anomaly detection techniques have been widely studied by researchers to locate targets that stand out from their backgrounds. Low-rank and sparse matrix decomposition model (LSDM), on the other hand, is an encouraging method to take advantage of the low-rank property of hyperspectral images and extract information from both background and anomalies. In this work, a hybrid anomaly detection method is proposed by fusing LSDM model with the Laplacian matrix to distinguish anomalies effectively. The proposed method steps are twofold. First, the high dimensional data is decomposed as low-rank and sparse matrices by robust subspace recovery algorithm as preprocessing step. After the decomposition process, Mahalanobis distance is applied to the sparse part of the data. Different than previous studies, the inverse of the covariance matrix is computed by the Laplacian matrix. The proposed approach achieves the best detection results, according to the experimental findings. The superiority of the proposed algorithm is highlighted by comparing the state-of-the-art algorithms based on four hyperspectral images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data will be available upon request.

References

  1. Zhang, S., Fu, G., Wang, H., Zhao, Y.: Degradation learning for unsupervised hyperspectral image super-resolution based on generative adversarial network. SIViP 15(8), 1695–1703 (2021)

    Article  Google Scholar 

  2. Kong, S.G., Chen, Y.R., Kim, I., Kim, M.S.: Analysis of hyperspectral fluorescence images for poultry skin tumor inspection. Appl. Opt. 43(4), 824–833 (2004)

    Article  Google Scholar 

  3. Shreyamsha Kumar, B.: Image fusion based on pixel significance using cross bilateral filter. SIViP 9(5), 1193–1204 (2015)

    Article  Google Scholar 

  4. Makki, I., Younes, R., Francis, C., Bianchi, T., Zucchetti, M.: A survey of landmine detection using hyperspectral imaging. ISPRS J. Photogramm. Remote. Sens. 124, 40–53 (2017)

    Article  Google Scholar 

  5. Nasrabadi, N.M.: Hyperspectral target detection: an overview of current and future challenges. IEEE Signal Process. Mag. 31(1), 34–44 (2014)

    Article  Google Scholar 

  6. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 19(1), 29–43 (2002)

    Article  Google Scholar 

  7. Matteoli, S., Diani, M., Corsini, G.: A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp. Electron. Syst. Mag. 25(7), 5–28 (2010)

    Article  Google Scholar 

  8. Kwon, H., Nasrabadi, N.M.: Kernel rx-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 388–397 (2005)

    Article  Google Scholar 

  9. Zhao, R., Du, B., Zhang, L.: A robust nonlinear hyperspectral anomaly detection approach. IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing 7(4), 1227–1234 (2014)

    Article  Google Scholar 

  10. Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 49(5), 1578–1589 (2011)

    Article  Google Scholar 

  11. Chang, C.I.: Target signature-constrained mixed pixel classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 40(5), 1065–1081 (2002)

    Article  Google Scholar 

  12. Farrell, M.D., Mersereau, R.M.: On the impact of covariance contamination for adaptive detection in hyperspectral imaging. IEEE Signal Process. Lett. 12(9), 649–652 (2005)

    Article  Google Scholar 

  13. Billor, N., Hadi, A.S., Velleman, P.F.: Bacon: blocked adaptive computationally efficient outlier nominators. Comput. Stat. Data Analys 34(3), 279–298 (2000)

    Article  MATH  Google Scholar 

  14. Su, H., Wu, Z., Zhu, A.X., Du, Q.: Low rank and collaborative representation for hyperspectral anomaly detection via robust dictionary construction. ISPRS J. Photogramm. Remote. Sens. 169, 195–211 (2020)

    Article  Google Scholar 

  15. Sun, W., Liu, C., Li, J., Lai, Y.M., Li, W.: Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery. J. Appl. Remote Sens. 8(1), 083–641 (2014)

    Article  Google Scholar 

  16. Zhou, T., Tao, D.: in Proceedings of the 28th international conference on machine learning, ICML 2011 (2011)

  17. Zhang, Y., Du, B., Zhang, L., Wang, S.: A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 54(3), 1376–1389 (2016)

    Article  Google Scholar 

  18. Bian, X., Panahi, A., Krim, H.: Bi-sparsity pursuit: a paradigm for robust subspace recovery. Signal Process. 152, 148–159 (2018)

    Article  Google Scholar 

  19. Kucuk, F., Toreyin, B.U., Celebi, F.V.: Sparse and low-rank matrix decomposition-based method for hyperspectral anomaly detection. J. Appl. Remote Sens. 13(1), 1–11 (2019)

    Article  Google Scholar 

  20. Zhang, F., Fang, H., Haojie, H.: Laplacian matrix graph for anomaly target detection in hyperspectral images. Wiley Electronics Lett 58(8), 312–314 (2022)

    Article  Google Scholar 

  21. Verdoja, F., Grangetto, M.: Graph laplacian for image anomaly detection. Mach. Vis. Appl. 31(1), 1–16 (2020)

    Google Scholar 

  22. Xi, B., Li, J., Li, Y., Song, R., Xiao, Y., Du, Q., Chanussot, J.: Semisupervised cross-scale graph prototypical network for hyperspectral image classification. IEEE Trans Neural Net Learn Syst (2022)

  23. Huang, J., Liu, K., Li, X.: Locality constrained low rank representation and automatic dictionary learning for hyperspectral anomaly detection. Remote Sensing 14(6), 1327 (2022)

    Article  Google Scholar 

  24. Pu, C., Huang, H., Luo, L.: Classfication of hyperspectral image with attention mechanism-based dual-path convolutional network. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  25. Qin, A., Shang, Z., Tian, J., Wang, Y., Zhang, T., Tang, Y.Y.: Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2018)

    Article  Google Scholar 

  26. Zhang, C., Florêncio, D.: Analyzing the optimality of predictive transform coding using graph-based models. IEEE Signal Process. Lett. 20(1), 106–109 (2012)

    Article  Google Scholar 

  27. Fracastoro, G., Fosson, S.M., Magli, E.: Steerable discrete cosine transform. IEEE Trans. Image Process. 26(1), 303–314 (2016)

  28. Hu, W., Cheung, G., Ortega, A., Au, O.C.: Multiresolution graph fourier transform for compression of piecewise smooth images. IEEE Trans. Image Process. 24(1), 419–433 (2014)

  29. Khazai, S., Homayouni, S., Safari, A., Mojaradi, B.: Anomaly detection in hyperspectral images based on an adaptive support vector method. IEEE Geosci. Remote Sens. Lett. 8(4), 646–650 (2011)

    Article  Google Scholar 

  30. Dong, X., Thanou, D., Frossard, P., Vandergheynst, P.: Learning laplacian matrix in smooth graph signal representations. IEEE Trans. Signal Process. 64(23), 6160–6173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The entire document has been prepared by FK. It includes such processes as designing, coding, writing, reviewing, and performing evaluations for the study.

Corresponding author

Correspondence to Fatma Küçük.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Consent for publication

The author provides consent for the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küçük, F. Hybrid anomaly detection method for hyperspectral images. SIViP 17, 2755–2761 (2023). https://doi.org/10.1007/s11760-023-02492-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02492-4

Keywords

Navigation