Skip to main content
Log in

3D EdgeSegNET: a deep neural network framework for simultaneous edge detection and segmentation of medical images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Deep learning has been a mainstream choice for computer-aided medical diagnosis in recent years. Medical practitioners need accurate and fast diagnosis results to monitor the extent of the disease and devise an efficient treatment plan. This article proposes a deep neural network-based 3D EdgeSegNET architectural framework for simultaneous segmentation and edge detection of brain tumors. It is essential to extract and analyze the critical information about the lesion’s shape and volume from the brain’s magnetic resonance imaging protocol for accurate tumor segmentation. A radiologist keeps a mental map of both edges and segmented regions while performing the brain tumor segmentation task, so shapes and segmented regions are essential parameters of any segmentation task. By recognizing the importance of boundary and area, an automated 3D EdgeSegNET model is devised by combining edge detection and semantic segmentation tasks in a single model architecture with a twofold output of interest of edges and tumor volume. The proposed model achieves more accurate and robust performance on the benchmark dataset provided by Brain Tumor Segmentation Challenge (BraTS 2020) compared to a few top-ranked submissions. The edge detection task obtains an F-measure at optimal dataset scale of 0.7704. An average dice score of 0.89595 and a Hausdorff distance (95th percentile) of 4.375 is achieved on the whole tumor for the semantic segmentation task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Available upon request.

References

  1. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  2. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. data 4(1), 1–13 (2017)

    Article  Google Scholar 

  3. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  4. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)

    Article  Google Scholar 

  5. Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 369–376. Springer (2012)

  6. Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans. Med. Imaging 27(5), 629–640 (2008)

    Article  Google Scholar 

  7. Subbanna, N.K., Precup, D., Collins, D.L., Arbel, T.: Hierarchical probabilistic Gabor and MRF segmentation of brain tumours in MRI volumes. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 751–758. Springer (2013)

  8. Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Graph-based detection, segmentation & characterization of brain tumors. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 988–995. IEEE (2012)

  9. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

  10. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432. Springer (2016)

  11. Zhang, D., Huang, G., Zhang, Q., Han, J., Han, J., Wang, Y., Yu, Y.: Exploring task structure for brain tumor segmentation from multi-modality MR images. IEEE Trans. Image Process. 29, 9032–9043 (2020)

    Article  MATH  Google Scholar 

  12. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  13. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded u-net: 1st place solution to brats challenge 2019 segmentation task. In: International MICCAI Brainlesion Workshop, pp. 231–241. Springer (2019)

  14. Zhao, Y.X., Zhang, Y.M., Liu, C.L.: Bag of tricks for 3d MRI brain tumor segmentation. In: International MICCAI Brainlesion Workshop, pp. 210–220. Springer (2019)

  15. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnu-net for brain tumor segmentation. In: International MICCAI Brainlesion Workshop, pp. 118–132. Springer (2020)

  16. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  17. Wang, Y., Zhang, Y., Hou, F., Liu, Y., Tian, J., Zhong, C., Zhang, Y., He, Z.: Modality-pairing learning for brain tumor segmentation. In: International MICCAI Brainlesion Workshop, pp. 230–240. Springer (2020)

  18. Heidler, K., Mou, L., Baumhoer, C., Dietz, A., Zhu, X.X.: Hed-unet: combined segmentation and edge detection for monitoring the Antarctic coastline. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021)

    Article  Google Scholar 

  19. Pourreza, R., Zhuge, Y., Ning, H., Miller, R.: Brain tumor segmentation in MRI scans using deeply-supervised neural networks. In: International MICCAI Brainlesion Workshop, pp. 320–331. Springer (2017)

  20. Iwasawa, J., Hirano, Y., Sugawara, Y.: Label-efficient multi-task segmentation using contrastive learning. In: International MICCAI Brainlesion Workshop, pp. 101–110. Springer (2021)

  21. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

  22. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9, 82031–82057 (2021)

    Article  Google Scholar 

  23. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

  24. Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 38(7), 1750–1762 (2019)

    Article  Google Scholar 

  25. Zhang, D., Huang, G., Zhang, Q., Han, J., Han, J., Wang, Y., Yu, Y.: Exploring task structure for brain tumor segmentation from multi-modality MR images. IEEE Trans. Image Process. 29, 9032–9043 (2020). https://doi.org/10.1109/TIP.2020.3023609

    Article  MATH  Google Scholar 

  26. Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Unified focal loss: generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 95, 102026 (2022)

    Article  Google Scholar 

  27. McKinley, R., Rebsamen, M., Meier, R., Wiest, R.: Triplanar ensemble of 3d-to-2d CNNs with label-uncertainty for brain tumor segmentation. In: International MICCAI Brainlesion Workshop, pp. 379–387. Springer (2019)

  28. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge (2018). arXiv:1811.02629

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally while preparing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Binit Kumar Pandit.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, B.K., Banerjee, A. 3D EdgeSegNET: a deep neural network framework for simultaneous edge detection and segmentation of medical images. SIViP 17, 2981–2989 (2023). https://doi.org/10.1007/s11760-023-02518-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02518-x

Keywords

Navigation