Skip to main content

Advertisement

Log in

EEG-based mental workload estimation of multiple sclerosis patients

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The amount of mental capacity required by individuals to complete any task is defined as mental workload. It is important to determine the appropriate level in order not to impose too much mental workload on individuals or not to create unnecessary human resources for the completion of a task. Multiple Sclerosis (MS) is an autoimmune neurodegenerative central nervous system disease that activates the acquired and innate immune systems due to the interaction between genetic and environmental factors and manifests itself with different neurological symptoms. This study aims to classify the mental workload level of MS patients as low, medium, or high from EEG signals during cognitive tasks in computer and virtual reality environments and to compare them with a healthy group performing the same tasks. In this study, the mental workload level of 45 volunteers is estimated by using EEG signals and NASA-Raw Task Load Index questionnaire results in 3 cognitive tasks in computer and virtual reality environments. The three-level mental workload classification accuracy in MS patients with the Support Vector Machine classifier is 96.08% and 94.12% for computer and virtual reality environments, respectively. For healthy volunteers, classification accuracy is 95.24% and 94.05% in computer and virtual reality environments, respectively. In the study, mental workload research was conducted for the first time from EEG signals of MS patients obtained during cognitive tasks in computer and virtual reality environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable

References

  1. Nicholas, R., Rashid, W.: Multiple sclerosis. Am. Fam. Physician 87, 712–714 (2013)

    Google Scholar 

  2. Mapping Multiple Sclerosis Around the World Key Epidemiology Findings Atlas of MS. http://www.atlasofms.org Accessed 25 September (2022)

  3. Qu, H., Shan, Y., Liu, Y., Pang, L., Fan, Z., Zhang, J., Wanyan, X.: Mental workload classification method based on EEG independent component features. Appl. Sci. (2020). https://doi.org/10.3390/app10093036

    Article  Google Scholar 

  4. Charles, R.L., Nixon, J.: Measuring mental workload using physiological measures: a systematic review. Appl. Ergon. (2019). https://doi.org/10.1016/J.APERGO.2018.08.028

    Article  Google Scholar 

  5. Lohani, M., Payne, B.R., Strayer, D.L.: A review of psychophysiological measures to assess cognitive states in real-world driving. Front. Hum. Neurosci. (2019). https://doi.org/10.3389/FNHUM.2019.00057

    Article  Google Scholar 

  6. Drake, R.A.: Psychophysiology and the electronic workplace. Am. J. Psychol. 102, 433–435 (1989)

    Article  Google Scholar 

  7. Kristeva-Feige, R., Fritsch, C., Timmer, J., Lücking, C.H.: Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task. Clin. Neurophysiol. (2002). https://doi.org/10.1016/S1388-2457(01)00722-2

    Article  Google Scholar 

  8. MacLean, M.H., Arnell, K.M., Cote, K.A.: Resting EEG in alpha and beta bands predicts individual differences in attentional blink magnitude. Brain Cogn. (2012). https://doi.org/10.1016/J.BANDC.2011.12.010

    Article  Google Scholar 

  9. Smit, A.S., Eling, P.A.T.M., Hopman, M.T., Coenen, A.M.L.: Mental and physical effort affect vigilance differently. Int. J. Psychophysiol. (2005). https://doi.org/10.1016/J.IJPSYCHO.2005.02.001

    Article  Google Scholar 

  10. Fernandez Rojas, R., Debie, E., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., Garratt, M., Abbass, H.: Electroencephalographic workload indicators during teleoperation of an unmanned aerial vehicle shepherding a swarm of unmanned ground vehicles in contested environments. Front. Neurosci. (2020). https://doi.org/10.3389/FNINS.2020.00040

    Article  Google Scholar 

  11. Mikulka, P.J., Scerbo, M.W., Freeman, F.G.: Effects of a biocybernetic system on vigilance performance. Hum. Factors (2002). https://doi.org/10.1518/0018720024496944

    Article  Google Scholar 

  12. Freeman, F.G., Mikulka, P.J., Prinzel, L.J., Scerbo, M.W.: Evaluation of an adaptive automation system using three EEG indices with a visual tracking task. Biol. Psychol. (1999). https://doi.org/10.1016/S0301-0511(99)00002-2

    Article  Google Scholar 

  13. Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indices of operator engagement in automated task. Biol. Psychol. (1995). https://doi.org/10.1016/0301-0511(95)05116-3

    Article  Google Scholar 

  14. Li, D., Wang, X., Menassa, C.C., Kamat, V.R.: Understanding the impact of building thermal environments on occupants’ comfort and mental workload demand through human physiological sensing. In: Pacheco-Torgal, F., Rasmussen, E., Granqvist, C.-G., Ivanov, V., Kaklauskas, A., Makonin, S. (eds.) Start-Up Creation, 2nd edn., pp. 291–341. Woodhead Publishing, Amsterdam, The Netherlands (2020)

    Chapter  Google Scholar 

  15. Xu, W., Liang, H.-N., Zhang, Z., Baghaei, N.: Studying the effect of display type and viewing perspective on user experience in virtual reality exergames. Games Health J. (2020). https://doi.org/10.1089/g4h.2019.0102

    Article  Google Scholar 

  16. Li, G., Anguera, J.A., Javed, S.V., Khan, M.A., Wang, G., Gazzaley, A.: Enhanced Attention using head-mounted virtual reality. J. Cogn. Neurosci. (2020). https://doi.org/10.1162/jocn_a_01560

    Article  Google Scholar 

  17. Tremmel, C., Herff, C., Sato, T., Rechowicz, K., Yamani, Y., Krusienski, D.J.: Estimating cognitive workload in an interactive virtual reality environment using EEG. Front. Hum. Neurosci. (2019). https://doi.org/10.3389/fnhum.2019.00401

    Article  Google Scholar 

  18. Lim, W.L., Sourina, O., Wang, L.P.: Stew: simultaneous task EEG workload data set. IEEE Trans. Neural Syst. Rehabil. Eng. (2018). https://doi.org/10.1109/TNSRE.2018.2872924

    Article  Google Scholar 

  19. Das Chakladar, D., Dey, S., Roy, P.P., Dogra, D.P.: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm. Biomed. Signal Process. Control (2020). https://doi.org/10.1016/J.BSPC.2020.101989

    Article  Google Scholar 

  20. Mohanavelu, K., Poonguzhali, S., Adalarasu, K., Ravi, D., Chinnadurai, V., Vinutha, S., Ramachandran, K., Jayaraman, S.: Dynamic cognitive workload assessment for fighter pilots in simulated fighter aircraft environment using EEG. Biomed. Signal Process. Control (2020). https://doi.org/10.1016/j.bspc.2020.102018

    Article  Google Scholar 

  21. Devos, H., Akinwuntan, A.E., Alissa, N., Morohunfola, B., Lynch, S.: Cognitive performance and cognitive workload in multiple sclerosis: Two different constructs of cognitive functioning? Multiple Scler. Related Disord. (2020). https://doi.org/10.1016/J.MSARD.2019.101505

    Article  Google Scholar 

  22. Şaşmaz Karacan, S., Saraoğlu, H.M., Canbaz Kabay, S., Akdağ, G., Keskinkılıç, C., Tosun, M.: Eeg based environment classification during cognitive task of multiple sclerosis patients. In: 2022 International Congress on Human-Computer Interaction. Optimization and Robotic Applications (HORA), pp. 01–04. IEEE, Ankara, Turkey (2022)

  23. Byers, J.C.: Traditional and raw task load index (TLX) correlations: Are paired comparisons necessary? In: Mital, A. (ed.) Adv. Ind. Ergon. Saf., pp. 481–485. Taylor & Francis, London (1989)

    Google Scholar 

  24. Georgsson, M.: NASA RTLX as a novel assessment tool for determining cognitive load and user acceptance of expert and user-based usability evaluation methods. Eur. J. Biomed. Informat. 16, 14–21 (2020)

    Google Scholar 

  25. Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. Proc. Human Factors Ergon. Soc. Annu. Meet. (2016). https://doi.org/10.1177/154193120605000909

    Article  Google Scholar 

  26. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. Adv. Psychol. (1988). https://doi.org/10.1016/S0166-4115(08)62386-9

    Article  Google Scholar 

  27. Brugada-Ramentol, V., Bozorgzadeh, A., Jalali, H.: Enhance VR: a multisensory approach to cognitive training and monitoring. Front. Digit. Health (2022). https://doi.org/10.3389/FDGTH.2022.916052

    Article  Google Scholar 

  28. Flores-Gallegos, R., Rodríguez-Leis, P., Fernández, T.: Effects of a virtual reality training program on visual attention and motor performance in children with reading learning disability. Int. J.Child-Comput. Interact. (2021). https://doi.org/10.1016/J.IJCCI.2021.100394

    Article  Google Scholar 

  29. Della Sala, S., Gray, C., Baddeley, A., Wilson, L.: Visual Patterns Test: A Test of Short-term Visual Recall. Thames Valley Test Company, England (1997)

    Google Scholar 

  30. Gronwall, D.M.A.: Paced auditory serial-addition task: a measure of recovery from concussion. Percept. Mot. Skills (1977). https://doi.org/10.2466/PMS.1977.44.2.367

    Article  Google Scholar 

  31. Vecchiato, G., Vecchio, D.M., Ascari, L., Antopolskiy, S., Deon, F., Kubin, L., Ambeck-Madsen, J., Rizzolatti, G., Avanzini, P.: Electroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulation. Brain Res. (2019). https://doi.org/10.1016/J.BRAINRES.2018.09.004

    Article  Google Scholar 

  32. Brouwer, A.M., Hogervorst, M.A., Van Erp, J.B.F., Heffelaar, T., Zimmerman, P.H., Oostenveld, R.: Estimating workload using EEG spectral power and ERPS in the n-back task. J. Neural Eng. (2012). https://doi.org/10.1088/1741-2560/9/4/045008

    Article  Google Scholar 

  33. Donoghue, T., Dominguez, J., Voytek, B.: Electrophysiological frequency band ratio measures conflate periodic and aperiodic neural activity. eNeuro (2020). https://doi.org/10.1523/ENEURO.0192-20.2020

    Article  Google Scholar 

  34. Pei, Z., Wang, H., Bezerianos, A., Li, J.: EEG-based multiclass workload identification using feature fusion and selection. IEEE Trans. Instrum. Meas. (2021). https://doi.org/10.1109/TIM.2020.3019849

    Article  Google Scholar 

  35. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. (2014). https://doi.org/10.1016/J.NEUBIOREV.2012.10.003

    Article  Google Scholar 

  36. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. (2002). https://doi.org/10.1023/A:1012487302797

    Article  MATH  Google Scholar 

  37. Richhariya, B., Tanveer, M., Rashid, A.H.: Diagnosis of alzheimer’s disease using universum support vector machine based recursive feature elimination (usvm-rfe). Biomed. Signal Process. Control (2020). https://doi.org/10.1016/j.bspc.2020.101903

    Article  Google Scholar 

  38. Liu, W., Wang, J.: Recursive elimination-election algorithms for wrapper feature selection. Appl. Soft Comput. (2021). https://doi.org/10.1016/J.ASOC.2021.107956

    Article  Google Scholar 

  39. Li, F., Yang, Y.: Analysis of recursive gene selection approaches from microarray data. Bioinformatics (2005). https://doi.org/10.1093/BIOINFORMATICS/BTI618

    Article  Google Scholar 

  40. Jafarian, A., Ngom, A., Rueda, L.: A novel recursive feature subset selection algorithm. In: 2011 IEEE 11th International Conference on Bioinformatics and Bioengineering, pp. 78–83. IEEE, Taichung, Taiwan (2011)

  41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Gholamiangonabadi, D., Kiselov, N., Grolinger, K.: Deep neural networks for human activity recognition with wearable sensors: leave-one-subject-out cross-validation for model selection. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.3010715

    Article  Google Scholar 

  43. Zhou, Y., Xu, Z., Niu, Y., Wang, P., Wen, X., Wu, X., Zhang, D.: Cross-task cognitive workload recognition based on EEG and domain adaptation. IEEE Trans. Neural Syst. Rehabil. Eng. (2022). https://doi.org/10.1109/TNSRE.2022.3140456

  44. Gupta, A., Siddhad, G., Pandey, V., Roy, P.P., Kim, B.G.: Subject-specific cognitive workload classification using EEG-based functional connectivity and deep learning. Sensors (2021). https://doi.org/10.3390/S21206710

    Article  Google Scholar 

  45. Kakkos, I., Dimitrakopoulos, G.N., Gao, L., Zhang, Y., Qi, P., Matsopoulos, G.K., Thakor, N., Bezerianos, A., Sun, Y.: Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Trans. Neural Syst. Rehabil. Eng. (2019). https://doi.org/10.1109/TNSRE.2019.2930082

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seda Şaşmaz Karacan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Consent to publish

The submission of this paper is consented by all the authors.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Ethical approval

The study was approved by the Clinical Research Ethics Committee of Kütahya Health Sciences University (18.06.2021-2021/03). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karacan, S.Ş., Saraoğlu, H.M., Kabay, S.C. et al. EEG-based mental workload estimation of multiple sclerosis patients. SIViP 17, 3293–3301 (2023). https://doi.org/10.1007/s11760-023-02547-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02547-6

Keywords

Navigation