Skip to main content
Log in

Variance-based no-reference quality assessment of AWGN images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a no-reference quality assessment method for image contaminated with additive white Gaussian noise (AWGN) is proposed. The proposed spatial domain method is based on the fact that if the portion of an image having structure is distorted by AWGN, then variance of the distorted image increases. On the other hand, if the smooth portion of image is contaminated by AWGN, then the distorted image will have proportionate variance as that of AWGN. Therefore, variance of the smoother parts of the image contaminated with AWGN reflects the level of noise and hence can be used as an indicator of the image quality. Extensive simulation results show that the proposed method is highly accurate and lower in complexity in comparison to the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The database used in this work is publicly available and the source is cited in the paper.

Code Availability

Code can be made available on the request.

References

  1. Wang, Z.: Objective image quality assessment: facing the real-world challenges. Electron. Imaging 2016(13), 1–6 (2016)

    Google Scholar 

  2. Wang, Z., Bovik, AC.: Modern image quality assessment. In: Synthesis Lectures on Image, Video, and Multimedia Processing, vol. 2(1), pp. 1–156 (2006)

  3. Athar, S., Wang, Z.: A comprehensive performance evaluation of image quality assessment algorithms. IEEE Access 7, 140030–140070 (2019)

    Article  Google Scholar 

  4. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a "completely blind " image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

  7. Liu, L., Liu, B., Huang, H., Bovik, A.C.: No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 29(8), 856–863 (2014)

    Article  Google Scholar 

  8. Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.: Blind image quality assessment using joint statistics of gradient magnitude and laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Venkatanath, N., Praneeth, D., Bh, M.C., Channappayya, S.S., Medasani, S.S.: Blind image quality evaluation using perception based features. In: 2015 Twenty First National Conference on Communications (NCC), pp. 1–6. IEEE (2015)

  10. Saha, Ashirbani, Wu, Qing Ming Jonathan.: Utilizing image scales towards totally training free blind image quality assessment. IEEE Trans. Image Process. 24(6), 1879–1892 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ke, G., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimed. 17(1), 50–63 (2014)

    Google Scholar 

  12. Ma, Y., Zhang, W., Yan, J., Fan, C., Shi, W.: Blind image quality assessment in multiple bandpass and redundancy domains. Digit. Signal Process. 80, 37–47 (2018)

    Article  MathSciNet  Google Scholar 

  13. Liu, L., Wang, T., Huang, H.: Pre-attention and spatial dependency driven no-reference image quality assessment. IEEE Trans. Multimed. (2019)

  14. Fang, Y., Zhu, H., Zeng, Y., Ma, K., Wang, Z.: Perceptual quality assessment of smartphone photography. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3677-3686 (2020)

  15. Zhang, W., Ma, K., Zhai, G., Yang, X.: Uncertainty-aware blind image quality assessment in the laboratory and wild. IEEE Trans. Image Process. 30, 3474–3486 (2021)

    Article  Google Scholar 

  16. Sun, W., Duan, H., Min, X., Chen, L., Zhai, G.: Blind quality assessment for in-the-wild images via hierarchical feature fusion strategy. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 01–06. Bilbao, Spain (2022)

  17. Song, T., Li, L., Chen, P., Liu, H., Qian, J.: Blind image quality assessment for authentic distortions by intermediary enhancement and iterative training. IEEE Trans. Circuits Syst. Video Technol. 32(11), 7592–7604 (2022)

    Article  Google Scholar 

  18. Alireza Golestaneh, S., Dadsetan, S., Kitani, K.M.: No-reference image quality assessment via transformers, relative ranking, and self-consistency. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1220-1230 (2022)

  19. Ferzli, Rony, Karam, Lina J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 18(4), 717–728 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vu, Phong V., Chandler, Damon M.: A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Signal Process. Lett. 19(7), 423–426 (2012)

    Article  Google Scholar 

  21. Narvekar, Niranjan D., Karam, Lina J.: A no-reference image blur metric based on the cumulative probability of blur detection (cpbd). IEEE Trans. Image Process. 20(9), 2678–2683 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vu, Cuong T., Phan, Thien D., Chandler, Damon M.: S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans. Image Process. 21(3), 934–945 (2011)

    Article  MATH  Google Scholar 

  23. Zhai, G., Wu, X.: Noise estimation using statistics of natural images. In: 2011 18th IEEE International Conference on Image Processing, pp. 1857–1860. IEEE (2011)

  24. Alireza Golestaneh, S., Chandler, Damon M.: No-reference quality assessment of JPEG images via a quality relevance map. IEEE Signal Process. Lett. 21(2), 155–158 (2013)

    Article  Google Scholar 

  25. Hassen, Rania, Wang, Zhou, Salama, Magdy MA.: Image sharpness assessment based on local phase coherence. IEEE Trans. Image Process. 22(7), 2798–2810 (2013)

    Article  Google Scholar 

  26. Zhai, G., Kaup, A., Wang, J., Yang, X.: A dual-model approach to blind quality assessment of noisy images. APSIPA Trans. Signal Inf. Process. 4 (2015)

  27. Fang, Ruigang, Al-Bayaty, Richard, Dapeng, Wu.: BNB method for no-reference image quality assessment. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1381–1391 (2016)

    Article  Google Scholar 

  28. Zhan, Y., Zhang, R.: No-reference JPEGimage quality assessment based on blockiness and luminance change. IEEE Signal Process. Lett. 24(6), 760–764 (2017)

    Article  Google Scholar 

  29. Zhu, Y., Zhai, G., Gu, K., Zhu, W.: No-reference quality assessment for JPEG compressed images. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2017)

  30. Nakhaei, A.A., Helfroush, M.S., Danyali, H., Ghanbari, M.: Subjectively correlated estimation of noise due to blurriness distortion based on auto-regressive model using the yule-walker equations. IET Image Process. 12(10), 1788–1796 (2018)

    Article  Google Scholar 

  31. Deng, C., Wang, S., Bovik, A.C., Huang, G.-B., Zhao, B.: Blind noisy image quality assessment using sub-band kurtosis. IEEE Trans. Cybern. (2019)

  32. Zoran, D., Weiss, Y.: Scale invariance and noise in natural images. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2209–2216. IEEE (2009)

  33. Krishna Moorthy, A., Conrad Bovik, A.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, C., Freeman, W.T., Szeliski, R., Kang, S.B.: Noise estimation from a single image. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 901–908. IEEE (2006)

  35. Liu, X., Tanaka, M., Okutomi, M.: Noise level estimation using weak textured patches of a single noisy image. In: 2012 19th IEEE International Conference on Image Processing, pp. 665–668. IEEE (2012)

  36. Turajlic, E.: Adaptive SVD domain-based white gaussian noise level estimation in images. IEEE Access 6, 72735–72747 (2018)

    Article  Google Scholar 

  37. Sheikh, HR.: LIVE image quality assessment database release 2. http://live.ece.utexas.edu/research/quality. (2005)

  38. Larson, EC., Chandler, DM.: Categorical image quality (CSIQ) database. http://vision.okstate.edu/csiq. (2009)

  39. Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., et al.: Image database tid2013: peculiarities, results and perspectives. Signal Process. Image Commun. 30, 57–77 (2015)

    Article  Google Scholar 

  40. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

  41. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

  42. Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

    Article  Google Scholar 

  43. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1098–1105. IEEE (2012)

  44. Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 4(8), 2579–2591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lin, H., Hosu, V., Saupe, D.: KADID-10k: a large-scale artificially distorted IQA database. In: Eleventh IEEE International Conference on Quality of Multimedia Experience (QoMEX), pp.1–3 (2019)

  46. Li, J., Qiao, S., Zhao, C., Zhang, T.: No-reference image quality assessment based on multiscale feature representation. IET Image Process. 15(13), 3318–3331 (2021)

    Article  Google Scholar 

  47. Zhang, W., Li, D., Ma, C., Zhai, G., Yang, X., Kede, M.: IEEE Transactions on Pattern Analysis and Machine Intelligence, EEE Transactions on Pattern Analysis and Machine Intelligence (2022)

Download references

Funding

Md Amir Baig acknowledges the financial support for this work from the Ministry of Electronics and Information Technology, Government of India, under Visvesvaraya PhD Scheme (Unique Awardee Number is MEITY-PHD-562) for Electronics and IT.

Author information

Authors and Affiliations

Authors

Contributions

Md Amir Baig wrote the main manuscript. Athar A. Moinuddin and E. Khan has given conceptual inputs during draft preparation.

Corresponding author

Correspondence to Md Amir Baig.

Ethics declarations

Conflict of interest/Conflict of interest

The authors declare that they have no conflict of interest/competing interests.

Ethical approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

The authors gives the consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, M., Moinuddin, A.A. & Khan, E. Variance-based no-reference quality assessment of AWGN images. SIViP 17, 3575–3583 (2023). https://doi.org/10.1007/s11760-023-02583-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02583-2

Keywords

Navigation