Skip to main content

Advertisement

Log in

A statistical significance test for spatio-temporal receptive field estimates obtained using spike-triggered averaging of binary pseudo-random sequences

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Spatio-temporal receptive fields (STRF) of visual neurons are often estimated using spike-triggered averaging of binary pseudo-random stimulus sequences. The spike train of a visual neuron is recorded simultaneously with the stimulus presentation. The neuron’s STRF is estimated by averaging the stimulus frames that coincide with spikes at fixed latencies. Although this is a widely used technique, an analytical method for determining the statistical significance of the estimated value of the STRF pixels seems to be lacking. Such a significance test would be useful for identifying the significant features of the STRF and investigating their relationship with experimental variables. Here, the distribution of the estimated STRF pixel values is derived for given spike trains, under the null hypothesis that spike occurrences and stimulus values are statistically independent. This distribution is then used for computing amplitude thresholds to determine the STRF pixels where the null hypothesis can be rejected at a desired two-tailed significance level. It is also proposed that the size of the receptive field may be inferred from the significant pixels. The application of the proposed method is illustrated on spike trains collected from individual mouse retinal ganglion cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets analyzed during the current study are available in the CRCNS.ORG repository, http://dx.doi.org/10.6080/K0RF5RZT [32].

References

  1. Castelfranco, A.M., Hartline, D.K.: Evolution of rapid nerve conduction. Brain Res. 1641(Pt A), 11–33 (2016). https://doi.org/10.1016/j.brainres.2016.02.015

    Article  Google Scholar 

  2. Sherrington, C.S.: The Integrative Action of the Nervous System. C Scribner and Sons, New York (1906)

    Google Scholar 

  3. Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953)

    Article  Google Scholar 

  4. Hubel, D.H., Wiesel, T.: “Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)

    Article  Google Scholar 

  5. Lindeberg, T.: Time-causal and time-recursive spatio-temporal receptive fields. J. Math. Imaging Vis. 55(1), 50–88 (2016). https://doi.org/10.1007/s10851-015-0613-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Yasui, S., Davis, W., Naka, K.: Spatio-temporal receptive field measurement of retinal neurons by random pattern stimulation and cross correlation. IEEE Trans. Biomed. Eng. 26(5), 263–272 (1979)

    Article  Google Scholar 

  7. Chichilnisky, E.J.: A simple white noise analysis of neuronal light responses. Network 12(2), 199–213 (2001)

    Article  MATH  Google Scholar 

  8. Schwartz, O., Pillow, J.W., Rust, N.C., Simoncelli, E.P.: Spike-triggered neural characterization. J. Vis. (2006). https://doi.org/10.1167/6.4.13

    Article  Google Scholar 

  9. Kim, I.J., Zhang, Y., Yamagata, M., Meister, M., Sanes, J.R.: Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008)

    Article  Google Scholar 

  10. Lefebvre, J.L., Zhang, Y., Meister, M., Wang, X., Sanes, J.R.: Gamma-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina. Development 135, 4141–4151 (2008)

    Article  Google Scholar 

  11. Bigelow, J., Malone, B.J.: Cluster-based analysis improves predictive validity of spike-triggered receptive field estimates. PLoS One 12(9), e0183914 (2017). https://doi.org/10.1371/journal.pone.0183914

    Article  Google Scholar 

  12. Seilheimer, R.L., Sabharwal, J., Wu, S.M.: Genetic dissection of rod and cone pathways mediating light responses and receptive fields of ganglion cells in the mouse retina. Vis. Res. 167, 15–23 (2020). https://doi.org/10.1016/j.visres.2019.12.005

    Article  Google Scholar 

  13. Li, H., et al.: Relationship between the dynamics of orientation tuning and spatiotemporal receptive field structures of cat LGN neurons. Neuroscience 377, 26–39 (2018). https://doi.org/10.1016/j.neuroscience.2018.02.024

    Article  Google Scholar 

  14. Ringach, D.L., Sapiro, G., Shapley, R.: A subspace reverse-correlation technique for the study of visual neurons. Vis. Res. 37(17), 2455–2464 (1997). https://doi.org/10.1016/s0042-6989(96)00247-7

    Article  Google Scholar 

  15. Malone, B.J., Kumar, V.R., Ringach, D.L.: Dynamics of receptive field size in primary visual cortex. J. Neurophysiol. 97(1), 407–414 (2007). https://doi.org/10.1152/jn.00830.2006

    Article  Google Scholar 

  16. Cai, D., DeAngelis, G.C., Freeman, R.D.: Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78(2), 1045–1061 (1997). https://doi.org/10.1152/jn.1997.78.2.1045

    Article  Google Scholar 

  17. Eckhorn, R., Krause, F., Nelson, J.I.: The RF-cinematogram. A cross-correlation technique for mapping several visual receptive fields at once. Biol. Cybern. 69(1), 37–55 (1993). https://doi.org/10.1007/BF00201407

    Article  Google Scholar 

  18. Theunissen, F.E., David, S.V., Singh, N.C., Hsu, A., Vinje, W.E., Gallant, J.L.: Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Netw.: Comput. Neural Syst. 12(3), 289–316 (2001). https://doi.org/10.1080/net.12.3.289.316

    Article  MATH  Google Scholar 

  19. Waleszczyk, W.J., et al.: Spectral receptive field properties of neurons in the feline superior colliculus. Exp. Brain Res. 181(1), 87–98 (2007). https://doi.org/10.1007/s00221-007-0908-1

    Article  Google Scholar 

  20. Wallace, M.T., Meredith, M.A., Stein, B.E.: Integration of multiple sensory modalities in cat cortex. Exp. Brain Res. 91(3), 484–488 (1992). https://doi.org/10.1007/BF00227844

    Article  Google Scholar 

  21. Wallace, M.T., Stein, B.E.: Sensory organization of the superior colliculus in cat and monkey. Prog. Brain Res. 112, 301–311 (1996). https://doi.org/10.1016/s0079-6123(08)63337-3

    Article  Google Scholar 

  22. Lewald, J., Ehrenstein, W.H., Guski, R.: Spatio-temporal constraints for auditory–visual integration. Behav. Brain Res. 121(1–2), 69–79 (2001). https://doi.org/10.1016/S0166-4328(00)00386-7

    Article  Google Scholar 

  23. Emerson, R.C., Citron, M.C., Vaughn, W.J., Klein, S.A.: Nonlinear directionally selective subunits in complex cells of cat striate cortex. J. Neurophysiol. 58(1), 33–65 (1987). https://doi.org/10.1152/jn.1987.58.1.33

    Article  Google Scholar 

  24. McLean, J., Palmer, L.A.: Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat. Vis. Res. 29(6), 675–679 (1989). https://doi.org/10.1016/0042-6989(89)90029-1

    Article  Google Scholar 

  25. Stevens, J.K., Gerstein, G.L.: Spatiotemporal organization of cat lateral geniculate receptive fields. J. Neurophysiol. 39(2), 213–238 (1976). https://doi.org/10.1152/jn.1976.39.2.213

    Article  Google Scholar 

  26. DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18(10), 451–458 (1995). https://doi.org/10.1016/0166-2236(95)94496-r

    Article  Google Scholar 

  27. Reid, R.C., Victor, J.D., Shapley, R.M.: The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14(6), 1015–1027 (1997). https://doi.org/10.1017/s0952523800011743

    Article  Google Scholar 

  28. Meister, M., Pine, J., Baylor, D.A.: Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods 51, 95–106 (1994)

    Article  Google Scholar 

  29. Moore, B.D., Kiley, C.W., Sun, C., Usrey, W.M.: Rapid plasticity of visual responses in the adult lateral geniculate nucleus. Neuron 71(5), 812–819 (2011). https://doi.org/10.1016/j.neuron.2011.06.025

    Article  Google Scholar 

  30. Rice, T.K., Schork, N.J., Rao, D.C.: Methods for handling multiple testing. Adv. Genet. 60, 293–308 (2008)

    Article  Google Scholar 

  31. Armstrong, R.A.: When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 34(5), 502–508 (2014). https://doi.org/10.1111/opo.12131

    Article  Google Scholar 

  32. Zhang, Y., Asari, H., Meister, M.: Multi-electrode recordings from retinal ganglion cells. CRCNS.org (2014). https://doi.org/10.6080/K0RF5RZT

    Article  Google Scholar 

Download references

Funding

The author did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MO identified the problem, developed the method, performed the analyses and wrote the manuscript.

Corresponding author

Correspondence to Murat Okatan.

Ethics declarations

Conflict of interest

No, I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper. The author has no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable (No ethical approval was needed for the present study since the data were downloaded as computer files from http://dx.doi.org/10.6080/K0RF5RZT [32]).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okatan, M. A statistical significance test for spatio-temporal receptive field estimates obtained using spike-triggered averaging of binary pseudo-random sequences. SIViP 17, 3759–3766 (2023). https://doi.org/10.1007/s11760-023-02603-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02603-1

Keywords

Navigation