Skip to main content
Log in

Joint semantic-aware and noise suppression for low-light image enhancement without reference

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Digital images captured from the real world are inevitably affected by light and noise. Moreover, the downstream high-level visual tasks, such as the computer vision-based object detection and semantic segmentation can be improved by adjusting the visibility of dark scenes. Although the approaches built upon deep learning have achieved great success in the low-light enhancement field, the significant influence of semantic features and noise is always overlooked. Therefore, a new unsupervised optical enhancement model based on semantic perception and noise suppression is proposed in this paper. First, the enhancement factor mapping is adopted to extract the low-light image features. Then, the progressive curve enhancement is utilized to adjust the curve. Compared with the fully supervised learning method, the well-built network is trained with unpaired images in this paper. Second, under the guidance of semantic feature embedding module, the low-light enhancement can preserve rich semantic information. Additionally, the self-supervised noise removal module is employed to effectively avoid noise interference and elevate image quality. Experimental outcomes and analysis indicate that the proposed scheme can not only generate the enhanced images of visually pleasing and artifact free, but also be applied to multiple downstream visual tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Tu, Z., Talebi, H., Zhang, H., Yang, F.: MAXIM: multi-axis MLP for image processing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5769–5780 (2022)

  2. Chen, Y., Xia, R., Yang, K., Zou, K.: MFFN: image super-resolution via multi-level features fusion network. Vis Comput 1–16 (2023). https://doi.org/10.1007/s00371-023-02795-0

  3. Dong, Z., Liu, Y., Feng, Y., Wang, Y., Xu, W., Chen, Y., Tang, Q.: Object detection method for high resolution remote sensing imagery based on convolutional neural networks with optimal object anchor scales. Int. J. Remote Sens. 43(7), 2698–2719 (2022)

    Article  Google Scholar 

  4. Zhang, J., Liu, Y., Guo, C., Zhan, J.: Optimized segmentation with image inpainting for semantic mapping in dynamic scenes. Appl. Intell. 53(2), 2173–2188 (2022)

    Article  Google Scholar 

  5. Wang, S., Zheng, J., Hu, H., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  6. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iqbal, M., Alib, S.S., Riaz, M.M., Ghafoora, A., Ahmadaet, A.: Color and white balancing in low-light image enhancement. Optik 209, 164260 (2020)

    Article  Google Scholar 

  8. Kim, G., Kwon, J.: Deep illumination-aware dehazing with low-light and detail enhancement. IEEE Trans. Intell. Transp. Syst. 23(3), 2494–2508 (2021)

    Article  MathSciNet  Google Scholar 

  9. Lu, Y., Gao, Y., Guo, Y., Xu, W., Hu, X.: Low-light image enhancement via gradient prior-aided network. IEEE Access. 10, 92583–92596 (2022)

    Article  Google Scholar 

  10. Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10561–10570 (2021)

  11. Hu, J., Guo, X., Chen, J., Liang, G., Deng, F., Lam, T.: A two-stage unsupervised approach for low light image enhancement. IEEE Robot. Autom. Lett. 6(4), 8363–8370 (2021)

    Article  Google Scholar 

  12. Zhao, Z., Xiong, B., Wang, L., Ou, Q., Yu, L., Kuang, F.: RetinexDIP: a unified deep framework for low-light image enhancement. IEEE Trans. Circuits Syst. Video Technol. 32(3), 1076–1088 (2021)

    Article  Google Scholar 

  13. Cheng, H., Shi, X.: A simple and effective histogram equalization approach to image enhancement. Digit. Signal Process. 14(2), 158–170 (2004)

    Article  Google Scholar 

  14. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  15. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  16. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, Y., Xia, R., Zou, K., Yang, K.: RNON: image inpainting via repair network and optimization network. Int. J. Mach. Learn. Cybern. 1–17 (2023). https://doi.org/10.1007/s13042-023-01811-y

  18. Zhao, L., Wang, K., Zhang, J.: Learning deep texture-structure decomposition for low-light image restoration and enhancement. Neurocomputing 524, 126–141 (2023)

    Article  Google Scholar 

  19. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 6, 650–662 (2017)

    Article  Google Scholar 

  20. Wei, C., Wang, W., Y ang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: Proceeding of British Machine Vision Conference, pp. 1–12 (2018)

  21. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceeding of ACM International Conference on Multimedia, pp. 1632–1640 (2019)

  22. Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

    Article  Google Scholar 

  23. Chen, Y., Xia, R., Zou, K., Yang, K.: FFTI: image inpainting algorithm via features fusion and two-steps inpainting. J. Vis. Commun. Image Represent. 91, 103776 (2023)

    Article  Google Scholar 

  24. Guo, C., Li, C., Guo, J., Loy, C. C., Hou, J., Kwong, S., Cong, R.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)

  25. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

  26. Zheng, S., Gupta, G.: Semantic-guided zero-shot learning for low-light image/video enhancement. In: Proceeding of IEEE Winter Conference on Applications of Computer Vision, pp. 581–590 (2022)

  27. Aakerberg, A., Johansen, A.S., Nasrollahi, K., Moeslund, T.B.: Semantic segmentation guided real-world super-resolution. In: Proceeding of IEEE Winter Conference on Applications of Computer Vision, pp. 449–458 (2022)

  28. Lin, T.Y., Dollar, P., Girshick, R., He, K.M., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 936–944 (2017)

  29. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, Z., Jiang, Y., Liu, D., Wang, Z.: CERL: a unified optimization framework for light enhancement with realistic noise. IEEE Trans. Image Process. 31, 4162–4172 (2022)

    Article  Google Scholar 

  31. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

  32. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2016)

    Article  Google Scholar 

  33. Blau, Y., Mechrez, R., Timofte, R.: The 2018 PIRM challenge on perceptual image super-resolution. In: Proceedings of the European Conference on Computer Vision Workshops, pp. 1–18 (2018)

  34. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vonikakis, V., Kouskouridas, R., Gasteratos, A.: On the evaluation of illumination compensation algorithms. Multimed. Tools Appl. 77(8), 9211–9231 (2018)

    Article  Google Scholar 

  38. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)

    Article  Google Scholar 

  39. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M.X., Wang, W.J., Zhu, Y.K., Pang, R.M., Vasudevan, V., Le, Q.V., Adam, H.: Searching for mobilenetv3. In: Proceeding of IEEE International Conference on Computer Vision, pp. 1314–1324 (2019)

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant No. 52172379).

Author information

Authors and Affiliations

Authors

Contributions

MZ: Formal analysis, Methodology, Software, Writing—original draft, Writing—review and editing. LL: Funding acquisition, Supervision. DJ: Writing—review and editing.

Corresponding author

Correspondence to Lidong Liu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, L. & Jiang, D. Joint semantic-aware and noise suppression for low-light image enhancement without reference. SIViP 17, 3847–3855 (2023). https://doi.org/10.1007/s11760-023-02613-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02613-z

Keywords

Navigation