Skip to main content
Log in

A new method of facial image compression based on meta-heuristic algorithms with variable bit budget allocation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

One of the important research areas in imaging is the formation of images, which plays an important role in many different applications, including surveillance, control, and security affairs. On the other hand, high spatial resolution is one of the most important factors for increasing image quality, but it increases the amount of storage memory. In face recognition systems, one of the existing challenges is maintaining the image recognition rate. Proposing a method that at least does not reduce detection rates would be very desirable. This article investigates how to compress facial images with high spatial resolution using innovative algorithms to reduce or even increase their accuracy as much as possible. In this article, meta-heuristic algorithms are used in a way that they are responsible for identifying the important and similar areas of matching macroblocks in the whole image segmentation. In the simulation and evaluation section, the facial images of the CIE and FEI databases have been examined as a selective study. The simulation results show the significant impact of the proposed methods using meta-heuristic algorithms in increasing the quality of PSNR and SSIM in contrast to the recognition efficiency. According to the proposed method, the larger the value of dividing the blocks, the better the average PSNR and SSIM. In general, depending on the type of application of the problem, there is a compromise to achieve the highest average PSNR or SSIM, using a genetic algorithm or gray wolf. The gray wolf algorithm, however, reaches its optimal answer much faster than the genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Access to data and information is open to the public.

References

  1. Lin, C.H., Chung, K.L., Fang, J.P,: Adjusted 4:2:2 Chroma Subsampling Strategy for Compressing Mosaic Videos with Arbitrary RGB Color Filter Arrays in HEVC. APSIPA (2014)

  2. Mohammed, R.B., van Silfhout, R.: High bandwidth data and image transmission using a scalable link model with integrated real-time data compression. Adv. Electr. Eng. Electron. Energy 1, 100017 (2021)

    Google Scholar 

  3. Joshi, K., Gill, S., Yadav, R.: A new method of image steganography using 7th bit of a pixel as indicator by introducing the successive temporary pixel in the gray scale image. J. Comput. Netw. Commun. 2018, 1 (2018)

    Article  Google Scholar 

  4. Chaudhary, P., Gupta, R., Singh, A., Majumder, P., Pandey, A.: Joint image compression and encryption using a novel column-wise scanning and optimization algorithm. Proc. Comput. Sci. 167, 244–253 (2020)

    Article  Google Scholar 

  5. Lakshmi Praba, V., Anitha, S: removing coding and inter pixel redundancy in high intensity part of image. J. Emerg. Technol. Innov. Res. 6(2) (2019)

  6. Bajit, A., Nahid, M., Tamtaoui, A., Benbrahim, M.: A psychovisual optimization of wavelet foveation-based image coding and quality assessment based on human quality criterions. Adv. Sci. Technol. Eng. Syst. J. 5(2), 225–234 (2020)

    Article  Google Scholar 

  7. Rajabi Moshtaghi, H., Toloie Eshlaghy, A., Motadel, M.R.: A comprehensive review on meta-heuristic algorithms and their classification with novel approach. J. Appl. Res. Ind. Eng. 6(3), 251–267 (2019)

    Google Scholar 

  8. Rikhtegara, A., Pooyanb, M., Manzuric, M.T.: Comparing performance of metaheuristic algorithms for. Int. J. Nonlinear Anal. Appl. 11(1), 301–319 (2020)

    Google Scholar 

  9. Emara, M.E., Abdel-Kader, R.F., Yasein, M.S.: Image compression using advanced optimization algorithms. J. Commun. (2017). https://doi.org/10.12720/jcm.12.5.271-278

    Article  Google Scholar 

  10. Jino Ramson, S.R., Lova Raju, K., Vishnu, S., Anagnostopoulos, T.: Nature inspired optimization techniques for image processing: a short review. In: Hemanth, J., Balas, V.E. (eds.) Nature inspired optimization techniques for image processing applications. Springer, Cham (2019)

    Google Scholar 

  11. Omari, M., Yaichi, S.: Image compression based on genetic algorithm optimization. 978-1-4799-8172-4/15/$31.00 ©2015 IEEE

  12. Shuying, Xu., Chang, C.C., Liu, Y.: A novel image compression technology based on vector quantisation and linear regression prediction. Connect. Sci. (2020). https://doi.org/10.1080/09540091.2020.1806206

    Article  Google Scholar 

  13. AL-Bundi, S.S., Abd, M.S.: A review on fractal image compression using optimization techniques. J. Al-Qadisiyah Comput. Sci. Math. 12(1), 38–48 (2020)

    Google Scholar 

  14. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  15. Sehgal, S., Ahuja, L., Hima Bindu, M.: Image compression using PSO-ALO hybrid metaheuristic technique. Int. J. Perform. Eng. 17(12), 998–1004 (2021)

    Article  Google Scholar 

  16. Shahid, Z., Dupont, F. and Baskurt, A.: A novel efficient Image compression system based on independent component analysis. In: The International society for optical engineering 7248, February 2009, https://doi.org/10.1117/12.806159

  17. Cuevas, E., Trujillo, A., Navarro, M.A., Diaz, P.: Comparison of recent metaheuristic algorithms for shape detection in images. Int. J. Comput. Intell. Syst. 13(1), 1059–1071 (2020)

    Article  Google Scholar 

  18. Sheraj, M. and Chopra, A: Data compression algorithm for audio and image using feature extraction. In: 2020 4th international conference on computer, communication and signal processing (ICCCSP)

  19. Cuevas, E., Zaldívar, D. and Perez-Cisneros, M: Applications of evolutionary computation in image processing and pattern recognition. In: Springer, Intelligent Systems Reference Library Volume 100

  20. Geetha, K., Anitha, V., Elhoseny, M., Kathiresan, S., Shamsolmoali, P., Selim, M.M.: An evolutionary lion optimization algorithm-based image compression technique for biomedical applications. Exp. Syst. (2020). https://doi.org/10.1111/exsy.12508

    Article  Google Scholar 

  21. Bian, N., Liang, F., Fu, H. and Lei, B.: A Deep image compression framework for face recognition nding the optimum structure of CNN for face recognition. 978-1-7281-4091-9/19/$31.00 ©2019 IEEE

  22. El-Kenawy, E.-S.M., Mirjalili, S., Abdelhamid, A.A., Ibrahim, A., Khodadadi, N., Eid, M.M.: Meta-heuristic optimization and keystroke dynamics for authentication of smartphone users. Mathematics 10, 2912 (2022). https://doi.org/10.3390/math10162912

    Article  Google Scholar 

  23. Venugopal Reddy, C.H., Siddaiah, P.: Hybrid LWT-SVD watermarking optimized using metaheuristic algorithms along with encryption for medical image security. Sig. Image Process. Int. J. 6(1), 75 (2015)

    Google Scholar 

  24. Hasan, M.K., Shamim Ahsan, Md., Abdullah-Al-Mamun, S.H., Newaz, S., Lee, G.M.: Human face detection techniques: a comprehensive review and future research directions. Electronics 10, 2354 (2021). https://doi.org/10.3390/electronics10192354

    Article  Google Scholar 

  25. Elad, M., Goldenberg, R., Kimmel, R.: Low bit-rate compression of facial images. IEEE Trans. Image Process. 16(9), 2379–2383 (2007). https://doi.org/10.1109/TIP.2007.903259

    Article  MathSciNet  Google Scholar 

  26. Soni, N., Sharma, E.K., Kapoor, A.: Hybrid meta-heuristic algorithm based deep neural network for face recognition. J. Comput. Sci. 51, 101352 (2021)

    Article  Google Scholar 

  27. Mascher-Kampfer, A., Stögner, H. and Uhl, A.: Comparison of compression algorithms impact on fingerprint and face recognition accuracy. In: Proc. SPIE 6508, Visual Communications and Image Processing 2007,650810, 12 pages, 29 (2007)

  28. Vila-Forcen, J.E., Voloshynovskiy, S., Koval, O., Pun, T.: Facial image compression based on structured codebooks in overcomplete domain. EURASIP J. Appl. Signal Process. 2006(69042), 1–11 (2006)

    MATH  Google Scholar 

  29. Liang, Y., et al.: Face hallucination with imprecise-alignment using iterative sparse representation. Pattern Recognit. (2014). https://doi.org/10.1016/j.patcog.2014.03.027

    Article  Google Scholar 

  30. Subban, R., Mankame, D., Nayeem, S., Pasupathi, P. and Muthukumar, S.: Genetic algorithm based human face recognition. Elsevier, 2014, In: Proc. of Int. Conf. on Advances in Communication, Network, and Computing, CNC

  31. Yang, Y., Liu, J., Tan, S., Wang, H.: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio. Appl. Soft Comput. J. 80, 42–56 (2019)

    Article  Google Scholar 

  32. Ramadan, R.M., Abdel-Kader, R.F.: Face recognition using particle swarm optimization-based selected features. Int. J. Signal Process. Image Process. Pattern Recogn. 2(2), 51 (2009)

    Google Scholar 

  33. Kaur, S., Agarwal, P., Rana, R.S.: Ant colony optimization: a technique used for image processing. Int J Comput Sci Technol 2(2), 173 (2011)

    Google Scholar 

  34. Bencherqui, A., Daoui, A., Karmouni, H., Qjidaa, H., Alfidi, M., Sayyouri, M.: Optimal reconstruction and compression of signals and images by Hahn moments and artificial bee Colony (ABC) algorithm. Multimedia Tools Appl. 81, 29753–29783 (2022)

    Article  Google Scholar 

  35. Asiedu, L., Essah, B.O., Iddi, S., Doku-Amponsah, K., Mettle, F.O.: Evaluation of the DWT-PCA/SVD recognition algorithm on reconstructed frontal face images. J Appl Math 2021, 1–8 (2021). https://doi.org/10.1155/2021/5541522

    Article  MathSciNet  Google Scholar 

  36. Lu, L., Hu, X., Chen, S., Sun, L. and Li, C: Face recognition based on weighted wavelet transform and compressed sensing. 978-1-5090-2860-3/16/$31.00 ©2016 IEEE

  37. https://paperswithcode.com/dataset/orl.

  38. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

  39. He, T., Chen, Z.: End-to-end facial image compression with integrated semantic distortion metric. 978-1-5386-4458-4/18/$31.00 ©2018 IEEE

  40. Selimović, A., Hladnik, A.: Content-aware image compression with convolutional neural networks. Original scientific paper. https://doi.org/10.24867/GRID-2018-p56

  41. Biswas, S., Sil, J., Maity, S.P.: On prediction error compressive sensing image reconstruction for face recognition. Comput. Electr. Eng. 70, 722 (2017)

    Article  Google Scholar 

  42. Elad, M., Goldenberg, R., Kimmel, R.: Low bit-rate compression of facial images. IEEE Trans Image Process 16, 2379–2383 (2007)

    Article  MathSciNet  Google Scholar 

  43. Qiuyu, Z., Suozhong, W.: Color personal ID photo compression based on object segmentation. In: IEEE Pacific Rim conference on communications, computers and signal processing, China (2005)

  44. Bala, J., Huang, J., Vafaie, H.: Hybrid learning using genetic algorithms and decision trees for pattern classification. Proc. Fourteenth Int. Joint Conf. Artif. Intell. 1, 719–724 (2012)

    Google Scholar 

  45. Sun, Y., & Yin, L.: A genetic algorithm based feature selection approach for 3D face recognition. In: Biometric consortium conference. USA, (2005)

  46. Liu, C., Wechsler, H.: Evolutionary pursuit and its application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 570–582 (2000)

    Article  Google Scholar 

  47. https://www.researchgate.net/figure/Example-images-of-CIE-database_fig3_343240268

  48. https://fei.edu.br/~cet/facedatabase.html

  49. Kahu, S.Y., Bhurchandi, K.M.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space. KSII Trans. Internet Inf. Syst. (2018). https://doi.org/10.3837/tiis.2018.10.023

    Article  Google Scholar 

  50. Pantanowitz, L., Liu, C., Huang, Y., Guo, H., Rohde, G.K.: Impact of altering various image parameters on human epidermal growth factor receptor 2 image analysis data quality. J Pathol Inform 8, 39 (2017)

    Article  Google Scholar 

  51. Giuliani, D.: Metaheuristic algorithms applied to color image segmentation on HSV space. J. Imag. (2022). https://doi.org/10.3390/jimaging8010006

    Article  Google Scholar 

  52. Mobahi, H., Rao, S.R., Yang, A.Y., Sastry, S.S., Ma, Y.: Segmentation of natural images by texture and boundary compression. Int. J. Comput. Vis. 95(1), 86–98 (2011). https://doi.org/10.1007/s11263-011-0444-0

    Article  Google Scholar 

  53. Jin, Y., Lee, H.J.: A block-based pass-parallel SPIHT algorithm. IEEE Trans. Circuits Syst. Video Technol 22(7), 1064–1075 (2012)

    Article  Google Scholar 

  54. Xiang, T., Qu, J., Xiao: Joint SPIHT compression and selective encryption. Appl. Soft Comput. 21, 159–170 (2014)

    Article  Google Scholar 

Download references

Funding

Funding not received.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed and reviewed all parts of the article.

Corresponding author

Correspondence to Gholamreza Ardeshir.

Ethics declarations

Competing interests

Always applicable and includes interests of a financial or personal nature.

Ethical approval

It can be used for human studies in the field of image compression.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12598 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi, R., Ardeshir, G. & Grailu, H. A new method of facial image compression based on meta-heuristic algorithms with variable bit budget allocation. SIViP 17, 3923–3931 (2023). https://doi.org/10.1007/s11760-023-02622-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02622-y

Keywords