Skip to main content
Log in

RS-UNet: lightweight network with reflection suppression for floating objects segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The research on image semantic segmentation of floating objects on water is beneficial to realize the automatic location of pollutants and facilitate the monitoring and salvage of pollutants. However, the segmentation accuracy of the existing deep neural networks is easily affected by the reflection noise of water surface. Besides, the models are not lightweight enough in practical applications. Based on the above two problems, the corresponding methods are proposed in this paper. Firstly, a Reflection Suppression Block (RSB) with Laplacian convolution is constructed to reduce the adverse impact of reflection on the task. Secondly, a Lightweight Encoder–Decoder (LED) is constructed to further improve the segmentation accuracy and reduce the number of model parameters. Finally, a novel model, named Reflection Suppression U-Net (RS-UNet), is formed by combining RSB and LED. The proposed model is trained with manually labeled floating objects segmentation dataset and achieves the best segmentation performance. The IoU of RS-UNet on the test set reaches 89.00%, which is 8.18% higher than that of U-Net, while its parameter number is only 20% of that of U-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. (2015). https://doi.org/10.1109/cvpr.2015.7298965

  2. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241. (2015). https://doi.org/10.1007/978-3-319-24574-4_28. Springer

  3. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  4. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Tran. Med. Imaging 39(6), 1856–1867 (2019). https://doi.org/10.1109/tmi.2019.2959609

    Article  Google Scholar 

  5. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020). https://doi.org/10.1016/j.neunet.2019.08.025

    Article  Google Scholar 

  6. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  7. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  8. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. 15(5), 749–753 (2018). https://doi.org/10.1109/lgrs.2018.2802944

    Article  Google Scholar 

  9. Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using u-net fully convolutional networks. Automat. Constr. 104, 129–139 (2019). https://doi.org/10.1016/j.autcon.2019.04.005

    Article  Google Scholar 

  10. Chen, Y., Xia, R., Zou, K., Yang, K.: Rnon: image inpainting via repair network and optimization network. Int. J. Mach. Learn. Cybern. (2023). https://doi.org/10.1007/s13042-023-01811-y

    Article  Google Scholar 

  11. Chen, Y., Xia, R., Yang, K., Zou, K.: Mffn: image super-resolution via multi-level features fusion network. Vis. Comput.r (2023). https://doi.org/10.1007/s00371-023-02795-0

    Article  Google Scholar 

  12. Arvanitopoulos, N., Achanta, R., Susstrunk, S.: Single image reflection suppression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4498–4506 (2017). https://doi.org/10.1109/cvpr.2017.190

  13. Yang, Y., Ma, W., Zheng, Y., Cai, J.-F., Xu, W.: Fast single image reflection suppression via convex optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8141–8149. (2019). https://doi.org/10.1109/cvpr.2019.00833

  14. Dong, Z., Xu, K., Yang, Y., Bao, H., Xu, W., Lau, R.W.: Location-aware single image reflection removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5017–5026. (2021). https://doi.org/10.1109/iccv48922.2021.00497

  15. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  16. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, PMLR, pp. 6105–6114. (2019)

  17. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589. (2020). https://doi.org/10.1109/cvpr42600.2020.00165

  18. Qilong, W., Banggu, W., Pengfei, Z., Peihua, L., Wangmeng, Z., Qinghua, H.: Eca-net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2020). https://doi.org/10.1109/cvpr42600.2020.01155

  19. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11–19. (2017). https://doi.org/10.1109/cvprw.2017.156

  20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708. (2017). https://doi.org/10.1109/cvpr.2017.243

  21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

  22. Iwanowski, M.: Image contrast enhancement based on laplacian-of-gaussian filter combined with morphological reconstruction. In: International Conference on Computer Recognition Systems, pp. 305–315. Springer, (2019). https://doi.org/10.1007/978-3-030-19738-4_31

  23. Lim, S., Kim, W.: Dslr: deep stacked laplacian restorer for low-light image enhancement. IEEE Trans. Multimed. 23, 4272–4284 (2020). https://doi.org/10.1109/tmm.2020.3039361

    Article  Google Scholar 

  24. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258. (2017). https://doi.org/10.1109/cvpr.2017.195

  25. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520. (2018). https://doi.org/10.1109/cvpr.2018.00474

  26. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324. (2019). https://doi.org/10.1109/iccv.2019.00140

  27. Chen, Y., Dai, X., Chen, D., Liu, M., Dong, X., Yuan, L., Liu, Z.: Mobile-former: bridging mobilenet and transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5270–5279. (2022). https://doi.org/10.1109/cvpr52688.2022.00520

  28. Tharani, M., Amin, A.W., Rasool, F., Maaz, M., Taj, M., Muhammad, A.: Trash detection on water channels. In: International Conference on Neural Information Processing, pp. 379–389. Springer, (2021). https://doi.org/10.1007/978-3-030-92185-9_31

  29. Cheng, Y., Zhu, J., Jiang, M., Fu, J., Pang, C., Wang, P., Sankaran, K., Onabola, O., Liu, Y., Liu, D., et al.: Flow: a dataset and benchmark for floating waste detection in inland waters. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10953–10962. (2021). https://doi.org/10.1109/iccv48922.2021.01077

  30. Li, N., Lv, X., Xu, S., Li, B., Gu, Y.: An improved water surface images segmentation algorithm based on the otsu method. J. Circuit Syst. Comp. 29(15), 2050251 (2020). https://doi.org/10.1142/s0218126620502515

    Article  Google Scholar 

  31. van Lieshout, C., van Oeveren, K., van Emmerik, T., Postma, E.: Automated river plastic monitoring using deep learning and cameras. Earth Space Sci. 7(8), 2019EA000960 (2020). https://doi.org/10.1029/2019ea000960

    Article  Google Scholar 

  32. Garcia-Garin, O., Monleón-Getino, T., López-Brosa, P., Borrell, A., Aguilar, A., Borja-Robalino, R., Cardona, L., Vighi, M.: Automatic detection and quantification of floating marine macro-litter in aerial images: introducing a novel deep learning approach connected to a web application in R. Environ. Pollut. 273, 116490 (2021). https://doi.org/10.1016/j.envpol.2021.116490

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Petrochemical Process Key Equipment Digital Twin Technology Engineering Research Center Open Project (DTEC202103), Research and Development of Key Technologies of Smart Clothing Enterprise Management Cloud Platform (BY2022218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoukun Xu.

Ethics declarations

Conflict of interest

All authors of this research paper declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhang, T., Li, B. et al. RS-UNet: lightweight network with reflection suppression for floating objects segmentation. SIViP 17, 4319–4326 (2023). https://doi.org/10.1007/s11760-023-02664-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02664-2

Keywords

Navigation