Skip to main content

Advertisement

Log in

An efficient lung sound classification technique based on MFCC and HDMR

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this work, an efficient feature extraction scheme is developed for classifying the pulmonary diseases. The proposed method is hybrid which combines two important techniques that are Mel Frequency Cepstral Coefficients (MFCC) and High-Dimensional Model Representation (HDMR). MFCC is capable of imitating the human ear; therefore, it is capable of characterizing the lung sounds acquired by a stethoscope. On the other hand, HDMR performs decorrelation and denoising to the high-dimensional data. The MFCC entries establish a two-dimensional feature matrix, which is decomposed in terms of less dimensional entities by the application of HDMR. These entities are considered feature vectors that are then fed to the relevant machine learning classification algorithms and then the overall accuracies are calculated. According to the results, the proposed algorithm achieves 97.2% classification accuracy which is competitive with other existing state-of-the-art methods in the literature. HDMR also improves significantly the classification efficiency of the proposed technique. The results emphasize that HDMR can be employed as an efficient method in recognizing pulmonary disease tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data is explained in depth in the study’s relevant section. ICBHI data are available at: https://bhichallenge.med.auth.gr/. KAUH data are available at: https://data.mendeley.com/datasets/jwyy9np4gv/3.

References

  1. Fraiwan, M., Fraiwan, L., Alkhodari, M., Hassanin, O.: Recognition of pulmonary diseases from lung sounds using convolutional neural networks and long short-term memory. J. Ambient. Intell. Humaniz. Comput. 13, 4759–4771 (2021). https://doi.org/10.1007/s12652-021-03184-y

    Article  Google Scholar 

  2. Petmezas, G., et al.: Automated lung sound classification using a hybrid CNN-LSTM network and focal loss function. Sensors (2022). https://doi.org/10.3390/s22031232

    Article  Google Scholar 

  3. Kim, Y., et al.: Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci. Rep. 11(1), 1–11 (2021). https://doi.org/10.1038/s41598-021-96724-7

    Article  Google Scholar 

  4. Sarkar, M., Madabhavi, I., Niranjan, N., Dogra, M.: Auscultation of the respiratory system. Ann. Thorac. Med. 10(3), 158 (2015). https://doi.org/10.4103/1817-1737.160831

    Article  Google Scholar 

  5. Palaniappan, R., Sundaraj, K., Sundaraj, S.: Artificial intelligence techniques used in respiratory sound analysis—a systematic review. Biomedizinische Technik/Biomed. Eng. 59(1), 7–18 (2014). https://doi.org/10.1515/bmt-2013-0074

    Article  Google Scholar 

  6. Pramono, R.X.A., Bowyer, S., Rodriguez-Villegas, E.: Automatic adventitious respiratory sound analysis: a systematic review. PLoS ONE 12(5), e0177926 (2017). https://doi.org/10.1371/journal.pone.0177926

    Article  Google Scholar 

  7. Jung, S.Y., Liao, C.H., Wu, Y.S., Yuan, S.M., Sun, C.T.: Efficiently classifying lung sounds through depthwise separable CNN models with fused STFT and MFCC features. Diagnostics 11(4), 732 (2021). https://doi.org/10.3390/diagnostics11040732

    Article  Google Scholar 

  8. Kahya, Y.P., Guler, E.C., Sahin, S.: Respiratory disease diagnosis using lung sounds 5, 2051–2053 (1997). https://doi.org/10.1109/IEMBS.1997.758751

  9. Bahoura, M.: Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes. Comput. Biol. Med. 39(9), 824–843 (2009). https://doi.org/10.1016/j.compbiomed.2009.06.011

    Article  Google Scholar 

  10. Içer, S., Gengeç, Ş: Classification and analysis of non-stationary characteristics of crackle and rhonchus lung adventitious sounds. Digit. Signal Process. 28, 18–27 (2014). https://doi.org/10.1016/j.dsp.2014.02.001

    Article  Google Scholar 

  11. Chen, C.H., Huang, W.T., Tan, T.H., Chang, C.C., Chang, Y.J.: Using k-nearest neighbor classification to diagnose abnormal lung sounds. Sensors 15(6), 13132–13158 (2015). https://doi.org/10.3390/s150613132

    Article  Google Scholar 

  12. Jakovljević, N., Lončar-Turukalo, T.: Hidden Markov model based respiratory sound classification. 66, 39–43 (2018). https://doi.org/10.1007/978-981-10-7419-6_7

  13. Aykanat, M., Kilic, O., Kurt, B., Saryal, S.: Classification of lung sounds using convolutional neural networks. EURASIP J. Image Video Process. 2017(1), 65 (2017). https://doi.org/10.1186/s13640-017-0213-2

    Article  Google Scholar 

  14. Bardou, D., Zhang, K., Ahmad, S.M.: Lung sounds classification using convolutional neural networks. Artif. Intell. Med. 88, 58–69 (2018). https://doi.org/10.1016/j.artmed.2018.04.008

    Article  Google Scholar 

  15. Demir, F., Sengur, A., Bajaj, V.: Convolutional neural networks based efficient approach for classification of lung diseases. Health Inf. Sci. Syst. 8(1), 1–8 (2019). https://doi.org/10.1007/s13755-019-0091-3

    Article  Google Scholar 

  16. Fraiwan, L., et al.: Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybern. Biomed. Eng. 41(1), 1–14 (2021). https://doi.org/10.1016/j.bbe.2020.11.003

    Article  Google Scholar 

  17. Rocha, B.M., Pessoa, D., Marques, A., Carvalho, P., Paiva, R.P.: Automatic classification of adventitious respiratory sounds: a (un)solved problem? Sensors 21(1), 57 (2021). https://doi.org/10.3390/s21010057

    Article  Google Scholar 

  18. Fraiwan, M., Fraiwan, L., Khassawneh, B., Ibnian, A.: A dataset of lung sounds recorded from the chest wall using an electronic stethoscope. Data Brief 35, 106913 (2021). https://doi.org/10.1016/j.dib.2021.106913

    Article  Google Scholar 

  19. Rocha, B.M., et al.: A respiratory sound database for the development of automated classification 33–37 (2018). https://doi.org/10.1007/978-981-10-7419-6_6

  20. Rocha, B.M., et al.: An open access database for the evaluation of respiratory sound classification algorithms. Physiol. Meas. 40(3), 035001 (2019). https://doi.org/10.1088/1361-6579/ab03ea

    Article  Google Scholar 

  21. Engin, M.A., Aras, S., Gangal, A.: Extraction of low-dimensional features for single-channel common lung sound classification. Med. Biol. Eng. Comput. 60(6), 1555–1568 (2022). https://doi.org/10.1007/s11517-022-02552-w

    Article  Google Scholar 

  22. Kwon, A.M., Kang, K.: A temporal dependency feature in lower dimension for lung sound signal classification. Sci. Rep. 12(1), 1–11 (2022). https://doi.org/10.1038/s41598-022-11726-3

    Article  Google Scholar 

  23. Saldanha, J., et al.: Data augmentation using variational autoencoders for improvement of respiratory disease classification. PLoS ONE 17(8), e0266467 (2022). https://doi.org/10.1371/journal.pone.0266467

    Article  Google Scholar 

  24. Cohen, A., Landsberg, D.: Analysis and automatic classification of breath sounds. IEEE Trans. Biomed. Eng. 9, 585–590 (1984)

    Article  Google Scholar 

  25. Sankur, B., Kahya, Y.P., Güler, E.Ç., Engin, T.: Comparison of AR-based algorithms for respiratory sounds classification. Comput. Biol. Med. 24(1), 67–76 (1994). https://doi.org/10.1016/0010-4825(94)90038-8

    Article  Google Scholar 

  26. Kandaswamy, A., Kumar, C.S., Ramanathan, R.P., Jayaraman, S., Malmurugan, N.: Neural classification of lung sounds using wavelet coefficients. Comput. Biol. Med. 34(6), 523–537 (2004). https://doi.org/10.1016/S0010-4825(03)00092-1

    Article  Google Scholar 

  27. Serbes, G., Sakar, C.O., Kahya, Y.P., Aydin, N.: Pulmonary crackle detection using time-frequency and time-scale analysis. Digit. Signal Process. 23(3), 1012–1021 (2013). https://doi.org/10.1016/j.dsp.2012.12.009

    Article  MathSciNet  Google Scholar 

  28. Messner, E., et al.: Multi-channel lung sound classification with convolutional recurrent neural networks. Comput. Biol. Med. 122, 103831 (2020). https://doi.org/10.1016/j.compbiomed.2020.103831

  29. Turner, C., Joseph, A.: A wavelet packet and MEL-frequency cepstral coefficients-based feature extraction method for speaker identification. Procedia Comput. Sci. 61, 416–421 (2015). https://doi.org/10.1016/j.procs.2015.09.177

  30. Rabiner, L.R., Schafer, R.W.: Theory and Applications of Digital Speech Processing. Pearson (2010)

  31. Li, F., Cox, T.: Digital Signal Processing in Audio and Acoustical Engineering. CRC Press (2019)

  32. Lopez-Ruiz, R.: From Natural to Artificial Intelligence. IntechOpen (2018). https://doi.org/10.5772/intechopen.71252

  33. Tuna, S., Özay, E.K., Tunga, B., Gürvit, E., Tunga, M.A.: An efficient feature extraction approach for hyperspectral images using wavelet high dimensional model representation. Int. J. Remote Sens. 43(19–24), 6899–6920 (2022). https://doi.org/10.1080/01431161.2022.2147036

    Article  Google Scholar 

  34. Tuna, S., et al.: Iterative enhanced multivariance products representation for effective compression of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 59(11), 9569–9584 (2021). https://doi.org/10.1109/TGRS.2020.3031016

    Article  Google Scholar 

  35. Manzhos, S., Ihara, M.: Optimization of hyperparameters of Gaussian process regression with the help of a low-order high-dimensional model representation: application to a potential energy surface. J. Math. Chem. 61, 7–20 (2023). https://doi.org/10.1007/s10910-022-01407-x

    Article  MathSciNet  MATH  Google Scholar 

  36. Kingsford, C., Salzberg, S.L.: What are decision trees? Nat. Biotechnol. 26(9), 1011–1013 (2008). https://doi.org/10.1038/nbt0908-1011

    Article  Google Scholar 

  37. Uddin, S., Haque, I., Lu, H., Moni, M.A., Gide, E.: Comparative performance analysis of k-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 12(6256), 1–11 (2022). https://doi.org/10.1038/s41598-022-10358-x

    Article  Google Scholar 

  38. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005). https://doi.org/10.1109/TGRS.2005.846154

    Article  Google Scholar 

Download references

Funding

This declaration is not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed equally to this work and reviewed the manuscript.

Corresponding author

Correspondence to Mahmud Esad Arar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arar, M.E., Sedef, H. An efficient lung sound classification technique based on MFCC and HDMR. SIViP 17, 4385–4394 (2023). https://doi.org/10.1007/s11760-023-02672-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02672-2

Keywords

Navigation