Skip to main content
Log in

An intelligent adaptive learning framework for fake video detection using spatiotemporal features

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Nowadays, multimedia is vulnerable to hacking because of insecurity. The traditional security mechanism is insufficient to deal with multimedia to protect them against malicious events. So, the present study has introduced a novel grey wolf-based YOLO spatiotemporal framework (GW-YSTF) for predicting frames, whether it is fake or real from the trained video data. After initializing the data, the function pre-processing is activated in the hidden layer of the GW-YSTF to eliminate the noisy features in the introduced video frames. Then, a feature analysis function was performed to select the needed parts. Henceforth, the fake video frames are predicted based on the different classes in the trained deepfake video database. Moreover, the presented model is tested in the Python environment. The improvement measure was validated in comparative analysis by comparing the proposed model performance with other existing models based on accuracy, recall, F-score, and precision. The proposed model has recorded the most comprehensive fake score for the accuracy of video frame prediction of 99.8%, higher than the traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Masud, U., Sadiq, M., Masood, S., El-Latif, A.A.A.: LW-deepfakenet: a lightweight time distributed CNN-LSTM network for real-time deep fake video detection. Signal Image Video Process. 17, 4029–4037 (2023). https://doi.org/10.1007/s11760-023-02633-9

    Article  Google Scholar 

  2. Aloraini, M.: FaceMD: convolutional neural network-based spatiotemporal fusion facial manipulation detection. Signal Image Video Process. 17, 247–255 (2023). https://doi.org/10.1007/s11760-022-02227-x

    Article  Google Scholar 

  3. Hu, Z., Duan, Q., Zhang, P., Tao, H.: An attention-erasing stripe pyramid network for face forgery detection. Signal Image Video Process. 17, 4123–4131 (2023). https://doi.org/10.1007/s11760-023-02644-6

    Article  Google Scholar 

  4. Ullah, W., Hussain, T., Khan, Z.A., Haroon, U., Baik, S.W.: Intelligent dual stream CNN and echo state network for anomaly detection. Knowl. Based Syst. 253, 109456 (2022). https://doi.org/10.1016/j.knosys.2022.109456

    Article  Google Scholar 

  5. Hashemzadeh, M., Farajzadeh, N., Heydari, M.: Smoke detection in video using convolutional neural networks and efficient spatiotemporal features. Appl. Soft Comput. 128, 109496 (2022). https://doi.org/10.1016/j.asoc.2022.109496

    Article  Google Scholar 

  6. Kamoona, A.M., Gostar, A.K., Bab-Hadiashar, A., Hoseinnezhad, R.: Multiple instance-based video anomaly detection using deep temporal encoding–decoding. Expert Syst. Appl. 214, 119079 (2023). https://doi.org/10.1016/j.eswa.2022.119079

    Article  Google Scholar 

  7. Zhang, H., Li, H.: Interactive spatio-temporal feature learning network for video foreground detection. Complex Intell. Syst. 8(5), 4251–4263 (2022). https://doi.org/10.1007/s40747-022-00712-x

    Article  Google Scholar 

  8. Aftab, S., Ali, S.F., Mahmood, A., Suleman, U.: A boosting framework for human posture recognition using spatio-temporal features along with radon transform. Multimed. Tools Appl. 81(29), 42325–42351 (2022). https://doi.org/10.1007/s11042-022-13536-1

    Article  Google Scholar 

  9. Yu, W., Huang, Q.: A deep encoder-decoder network for anomaly detection in driving trajectory behavior under spatio-temporal context. Int. J. Appl. Earth Obs. Geoinf. 115, 103115 (2022). https://doi.org/10.1016/j.jag.2022.103115

    Article  Google Scholar 

  10. Ullah, W., Ullah, A., Hussain, T., Muhammad, K., Heidari, A.A., Del Ser, J., Baik, S.W., De Albuquerque, V.H.: Artificial Intelligence of Things-assisted two-stream neural network for anomaly detection in surveillance big video data. Future Gener. Comput. Syst. 129, 286–297 (2022). https://doi.org/10.1016/j.future.2021.10.033

    Article  Google Scholar 

  11. Bekhouche, S.E., Ruichek, Y., Dornaika, F.: Driver drowsiness detection in video sequences using hybrid selection of deep features. Knowl. Based Syst. 252, 109436 (2022). https://doi.org/10.1016/j.knosys.2022.109436

    Article  Google Scholar 

  12. Nayak, R., Pati, U.C., Das, S.K.: A comprehensive review on deep learning-based methods for video anomaly detection. Image Vis. Comput. 106, 104078 (2021). https://doi.org/10.1016/j.imavis.2020.104078

    Article  Google Scholar 

  13. Ullah, W., Hussain, T., Baik, S.W.: Vision transformer attention with multi-reservoir echo state network for anomaly recognition. Inf. Process. Manag. 60(3), 103289 (2023). https://doi.org/10.1016/j.ipm.2023.103289

    Article  Google Scholar 

  14. Ullah, A., Muhammad, K., Ding, W., Palade, V., Haq, I.U., Baik, S.W.: Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications. Appl. Soft Comput. 103, 107102 (2021). https://doi.org/10.1016/j.asoc.2021.107102

    Article  Google Scholar 

  15. Wu, L., Huang, C., Zhao, S., Li, J., Zhao, J., Cui, Z., Yu, Z., Xu, Y., Zhang, M.: Robust fall detection in video surveillance based on weakly supervised learning. Neural Netw. (2023). https://doi.org/10.1016/j.neunet.2023.03.042

    Article  PubMed  Google Scholar 

  16. Gul, S., Malik, M.I., Khan, G.M., Shafait, F.: Multi-view gait recognition system using spatio-temporal features and deep learning. Expert Syst. Appl. 179, 115057 (2021). https://doi.org/10.1016/j.eswa.2021.115057

    Article  Google Scholar 

  17. Pandey, N.N., Muppalaneni, N.B.: Dumodds: dual modeling approach for drowsiness detection based on spatial and spatio-temporal features. Eng. Appl. Artif. Intell. 119, 105759 (2023). https://doi.org/10.1016/j.engappai.2022.105759

    Article  Google Scholar 

  18. Thakkar, K., Lo, D.: Video normalization in identifying fake videos using a long short-term memory model. Southeast Con. 189, 108282 (2023). https://doi.org/10.1109/SoutheastCon51012.2023.10115139

    Article  Google Scholar 

  19. Mohammed, S.K., Singh, S., Mizouni, R., Otrok, H.: A deep learning framework for target localization in error-prone environment. Int. Things 22, 100713 (2023). https://doi.org/10.1016/j.iot.2023.100713

    Article  Google Scholar 

  20. Tian, H., Ma, X., Wu, H., Li, Y.: Skeleton-based abnormal gait recognition with spatio-temporal attention enhanced gait-structural graph convolutional networks. Neurocomputing 473, 116–126 (2022). https://doi.org/10.1016/j.neucom.2021.12.004

    Article  Google Scholar 

  21. Aslam, N., Kolekar, M.H.: Unsupervised anomalous event detection in videos using spatio-temporal inter-fused autoencoder. Multimed. Tools Appl. 20, 1–26 (2022). https://doi.org/10.1007/s11042-022-13496-6

    Article  Google Scholar 

  22. Mohanty, S.K., Rup, S.: An adaptive background modeling for foreground detection using spatio-temporal features. Multimed. Tools Appl. 80, 1311–1341 (2021). https://doi.org/10.1007/s11042-020-09552-8

    Article  Google Scholar 

  23. Fakhar, B., RashidyKanan, H., Behrad, A.: Event detection in soccer videos using unsupervised learning of spatio-temporal features based on pooled spatial pyramid model. Multimed. Tools Appl. 78(12), 16995–17025 (2019). https://doi.org/10.1007/s11042-018-7083-1

    Article  Google Scholar 

  24. Suratkar, S., Kazi, F.: Deep fake video detection using transfer learning approach. Arab. J. Sci. Eng. 102, 1–1 (2022). https://doi.org/10.1007/s13369-022-07321-3

    Article  Google Scholar 

  25. Liu, B., Liu, Q., Zhang, T., Yang, Y.: MSSTResNet-TLD: a robust tracking method based on tracking-learning-detection framework by using multi-scale spatio-temporal residual network feature model. Neurocomputing 362, 175–194 (2019). https://doi.org/10.1016/j.neucom.2019.07.024

    Article  Google Scholar 

  26. Dehkordy, D.T., Rasoolzadegan, A.: A new machine learning-based method for android malware detection on imbalanced dataset. Multimed. Tools Appl. 80, 24533–24554 (2021). https://doi.org/10.1007/s11042-021-10647-z

    Article  Google Scholar 

  27. Sadaf, K., Sultana, J.: Intrusion detection based on auto encoder and isolation forest in fog computing. IEEE Access 8, 167059–167068 (2020). https://doi.org/10.1109/ACCESS.2020.3022855

    Article  Google Scholar 

  28. Meesad, P.: Thai fake news detection based on information retrieval, natural language processing and machine learning. SN Comput. Sci. 2(6), 425 (2021). https://doi.org/10.1007/s42979-021-00775-6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang, C.Z., Ma, J., Wang, S., Liew, A.W.C.: Preventing deepfake attacks on speaker authentication by dynamic lip movement analysis. IEEE Trans. Inf. Forensics Secur. 16, 1841–1854 (2020). https://doi.org/10.1109/TIFS.2020.3045937

    Article  Google Scholar 

  30. Heusch, G., George, A., Geissbühler, D., Mostaani, Z., Marcel, S.: Deep models and shortwave infrared information to detect face presentation attacks. IEEE Trans. Biom. Behav. Identity Sci. 2(4), 399–409 (2020). https://doi.org/10.1109/TBIOM.2020.3010312

    Article  Google Scholar 

  31. Fan, R., Si, C., Yi, W., Wan, Q.: YOLO-DoA: a new data-driven method of DoA estimation based on YOLO neural network framework. IEEE Sens. Lett. 7(2), 1–4 (2023). https://doi.org/10.1109/LSENS.2023.3241080

    Article  CAS  Google Scholar 

  32. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  33. Bansal, N., Aljrees, T., Yadav, D.P., Singh, K.U., Kumar, A., Verma, G.K., Singh, T.: Real-time advanced computational intelligence for deep fake video detection. Appl. Sci. 13(5), 3095 (2023). https://doi.org/10.3390/app13053095

    Article  CAS  Google Scholar 

  34. Suratkar, S., Kazi, F.: Deep fake video detection using transfer learning approach. Arab. J. Sci. Eng. 48(8), 9727–9737 (2023). https://doi.org/10.1007/s13369-022-07321-3

    Article  Google Scholar 

  35. Zhou, H., Jiang, F., Lu, H.: SSDA-YOLO: Semi-supervised domain adaptive YOLO for cross-domain object detection. Comput. Vis. Image Underst. 229, 103649 (2023). https://doi.org/10.1016/j.cviu.2023.103649

    Article  Google Scholar 

  36. Suratkar, S., Bhiungade, S., Pitale, J., Soni, K., Badgujar, T., Kazi, F.: Deep-fake video detection approaches using convolutional–recurrent neural networks. J. Control. Decis. 10(2), 198–214 (2023). https://doi.org/10.1080/23307706.2022.2033644

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Authors AK, MBR, and GJS have contributed equally to the work.

Corresponding author

Correspondence to Allada Koteswaramma.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of analysis, formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koteswaramma, A., Rao, M.B. & Suma, G.J. An intelligent adaptive learning framework for fake video detection using spatiotemporal features. SIViP 18, 2231–2241 (2024). https://doi.org/10.1007/s11760-023-02895-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02895-3

Keywords

Navigation