Skip to main content
Log in

Moving object detection in satellite videos based on an improved ViBe algorithm

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper studies moving object detection in satellite videos, which plays a significant role for large-scale video monitoring and dynamic analysis. Due to the tiny targets, complex background, and completely or partly occlusion, moving object detection accurately from each image frame is difficult and challenging. In order to tackle the issues, we propose an improved Visual Background Extractor algorithm (ViBe) with an improved Canny edge detection operator. First, the improved Canny operator based on iteration method is employed to find the optimal high and low thresholds and extract more edges information of satellite videos. Furthermore, the eight pixels are replaced with twenty-four pixels and the times of target threshold is introduced in ViBe detection to increase the selection range of backgrounds. The experiments are tested in SATSOT datasets, where the results verify that the proposed method is more robust in complex background with interference, turning and rapid motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data used to support the findings of the study are available from the corresponding author upon request.

References

  1. Zhang, J., Jia, X., Hu, J.: Error bounded foreground and background modeling for moving object detection in satellite videos. IEEE Trans. Geosci. Remote Sens. 58(4), 2659–2669 (2019)

    ADS  Google Scholar 

  2. Yang, T., Wang, X., Yao, B., Li, J., Zhang, Y., He, Z., Duan, W.: Small moving vehicle detection in a satellite video of an urban area. Sensors 16(9), 1528 (2016)

    ADS  PubMed  PubMed Central  Google Scholar 

  3. Shu, M., Zhong, Y., Lv, P.: Small moving vehicle detection via local enhancement fusion for satellite video. Int. J. Remote Sens. 19(20), 7189–7214 (2021)

    Google Scholar 

  4. Angelo, D.P., Mattyus, G., Reinartz, P.: Skybox image and video product evaluation. Int. J. Image Data Fusion 7, 3–18 (2016)

    Google Scholar 

  5. Ammar, H., Wang, X., Saleem, K., et al.: GLT: grouping-based location tracking for object tracking sensor networks. Wirel. Commun. Mob. Comput. 2017, 1–19 (2017)

    Google Scholar 

  6. Zhang, J., Jia, X., Hu, J.: Local region proposing for frame-based vehicle detection in satellite videos. Remote Sens. 11(20), 2372 (2019)

    ADS  Google Scholar 

  7. Tang, Z.: Intelligent target detection and tracking algorithm for martial arts applications. Wirel. Commun. Mob. Comput. 2022, 1–10 (2022)

    Google Scholar 

  8. Pei, W., Lu, X.: Moving object tracking in satellite videos by kernelized correlation filter based on color-name features and Kalman prediction. Wirel. Commun. Mob. Comput. 2022, 1–16 (2022)

    Google Scholar 

  9. Li, X., Zhang, L., You, J.: Domain transfer learning for hyperspectral image super-resolution. Remote Sens. 11(6), 694 (2019)

    ADS  Google Scholar 

  10. Mo, L., Guo, S.: Consensus of linear multi-agent systems with persistent disturbances via distributed output feedback. J. Syst. Sci. Complex. 32, 835–845 (2019)

    MathSciNet  Google Scholar 

  11. Pei, W.: Staring imaging attitude tracking control laws for video satellites based on image information by hyperbolic tangent fuzzy sliding mode control. Comput. Intell. Neurosci. 2022, 1–13 (2022)

    Google Scholar 

  12. Nunziata, F., Li, X., Marino, A., Shao, W., Portabella, M., Yang, X., Buono, A.: Microwave satellite measurements for coastal area and extreme weather monitoring. Remote Sens. 13(16), 3126 (2021)

    ADS  Google Scholar 

  13. Hawkins, A., Carrico, J., Motiwala, S., Maclachlan, C.: Flight dynamics operations and collision avoidance for the skysat imaging constellation, In: 9th international workshop on satellite constellations and formation flying (IWSCFF). University of Colorado, Boulder, CO, USA (2017)

    Google Scholar 

  14. Murthy, A.K., Shearn, M., Smiley B.D.: SkySat-1: very high-resolution imagery from a small satellite. In: Proceedings of the Sensors, Systems, and Next-Generation Satellites XVIII, Amsterdam, Netherlands, September (2014)

  15. Steckling, M., Renner, U., Röser, H.P.: DLR-TUBSAT, qualifification of high precision attitude control in orbit. Acta Astronaut. 39, 951–960 (1999)

    ADS  Google Scholar 

  16. Chen, N.: Jilin-1: China’s first commercial remote sensing satellites aim to fill the void, Chinese Academy of Sciences (2016)

  17. Xiao, A., Wang, Z., Wang, L., Ren, Y.: Super-resolution for “Jilin-1” satellite video imagery via a convolutional network. Sensors 18(4), 1194 (2018)

    ADS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, X., Xiang, J., Zhang, Y.: Space object detection in video satellite images using motion information. Int. J. Aerosp. Eng. 3, 1–9 (2017)

    Google Scholar 

  19. Wang, W., Li, Q., Tang, L.: Algorithm of vehicle detection in low altitude aerial video. J. Wuhan Univ. Technol. 32, 155–158 (2010)

    CAS  Google Scholar 

  20. Luo, Y., Liang, Y., Wang, Y.: Traffic flow parameter estimation from satellite video data based on optical flow. Comput. Eng. Appl. 54, 204–207 (2018)

    Google Scholar 

  21. Mo, L., Yu, Y., et al.: Distributed continuous-time optimization of second-order multiagent systems with nonconvex input constraints. IEEE Trans. Syst., Man, Cybernet. Syst. 51, 6404–6413 (2021)

    Google Scholar 

  22. Mo, L., Guo, S., Yu, Y.: Mean-square consensus of heterogeneous multi-agent systems with nonconvex constraints markovian switching topologies and delays. Neurocomputing 291, 167–174 (2018)

    Google Scholar 

  23. Gueguen, L., Hamid, R.: Large-scale damage detection using satellite imagery, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 1321–1328, MA, USA. June (2015)

  24. Ma, H., Wang, Y.: Full information H2 control of Borel-measurable Markov jump systems with multiplicative noises. Mathematics 10(1), 37 (2021)

    MathSciNet  Google Scholar 

  25. Hu, L.: Evaluation research on the application of GF-1 satellite for monitoring major engineering land. J. North China Inst. Sci. Technol. 12, 110–115 (2015)

    CAS  Google Scholar 

  26. Kalpana, G., Singhai, J.: Recursive-learning-based moving object detection in video with dynamic environment. Multimed. Tools Appl. 80(3), 1–12 (2021)

    Google Scholar 

  27. Yoo, J., Lee, G.C.: Moving object detection using an object motion reflection model of motion vectors. Symmetry 11(1), 34 (2019)

    ADS  Google Scholar 

  28. Hu, H., Xu, L., Zhao, H.: A spherical codebook in YUV color space for moving object detection. Sens. Lett. 10, 177–189 (2012)

    Google Scholar 

  29. Cuevas, C., Yáñez, E.M., García, N.: Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Comput. Vis. Image Underst. 152, 103–117 (2016)

    Google Scholar 

  30. Yeh, C.H., Lin, C.Y., Muchtar, K., et al.: Three-pronged compensation and hysteresis thresholding for moving object detection in real-time video surveillance. IEEE Trans. Ind. Electron. 64(6), 4945–4955 (2017)

    Google Scholar 

  31. Zhou, Z., Hu, F.: Object detection in nonstationary scenes based on background modeling. Comput. Eng. 34(24), 203–205 (2008)

    Google Scholar 

  32. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 2, 246–252 (1999)

    Google Scholar 

  33. Cristani, M., Farenzena, M., Bloisi, D., Murino, V.: Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP J. Adv. Sig. Process. 2010, 1–24 (2010)

    Google Scholar 

  34. Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving object detection in spatial domain using background removal techniques—state-of-art. Recent Patents Comput. Sci. 1, 32–34 (2008)

    Google Scholar 

  35. Luo, X., Wang, Y., Cai, B., Li, Z.: Moving object detection in traffic surveillance video: new MOD-AT method based on adaptive threshold. ISPRS Int. J. Geo-Inform. 10(11), 742 (2021)

    ADS  Google Scholar 

  36. Sun, T., Qi, Y., Geng, G.: Moving object detection algorithm based on frame difference and background subtraction. J. Jilin Univ. (Eng. Technol. Edit.) 4, 1325–1329 (2016)

    Google Scholar 

  37. Stauffer, C., Grimson, W.E.L.: 1999 adaptive background mixture models for real-time tracking. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, 246–252 (1999)

    Google Scholar 

  38. Zhang, J., Chen, C.H.: Moving objects detection and segmentation in dynamic video backgrounds, In: 2007 IEEE Conference on Technologies for Homeland Security, pp. 64–69 (2007)

  39. Wixson, L.: Detecting salient motion by accumulating directionally consistent flow. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 774–780 (2022)

    Google Scholar 

  40. Anshuman, A., Gupta, S., Singh, D.K.: Review of optical flow technique for moving object detection, In: 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pp. 409–413, Greater Noida, India, December (2016)

  41. Makino, K., Shibata, T., Yachida, S., Ogawa, T., Takahashi K.: Moving-object detection method for moving cameras by merging background subtraction and optical flow methods, In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 383–387, Montreal, QC, Canada, November (2017)

  42. Collins, R.T., Lipton, A.J., Kanade, T., et al.: A system for video surveillance and monitoring. VSAM Final Rep. 1, 1–68 (2000)

    Google Scholar 

  43. Lipton, A.J., Fujiyoshi, H., Patil, R.S.: Moving target classification and tracking from real-time video, In: Proceedings Fourth IEEE Workshop on Applications of Computer Vision, pp. 8–14 (1998)

  44. Tezcan, O., Ishwar, P., Konrad, J.: BSUV-net: a fully-convolutional neural network for background subtraction of unseen videos, In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2774–2783 (2020)

  45. Babaee, M., Dinh, D.T., Rigoll, G.: A deep convolutional neural network for video sequence background subtraction. Pattern Recognit. 76, 635–649 (2018)

    ADS  Google Scholar 

  46. Yang, L., Li, J., Luo, Y., et al.: Deep background modeling using fully convolutional network. IEEE Trans. Intell. Transp. Syst. 19(1), 254–262 (2017)

    Google Scholar 

  47. Liu, Y., Liao, Y., Lin, C., Jia, Y., Li, Z., Yang, X.: Object tracking in satellite videos based on correlation filter with multi-feature fusion and motion trajectory compensation. Remote Sens. 14(3), 777 (2022)

    ADS  Google Scholar 

  48. Meng, L., Kerekes, J.P.: Object tracking using high resolution satellite imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 5, 146–152 (2012)

    ADS  Google Scholar 

  49. Lei, L., Guo, D.: Multitarget detection and tracking method in remote sensing satellite video. Comput. Intell. Neurosci. 2021, 1–7 (2021)

    Google Scholar 

  50. Du, B., Sun, Y., Cai, S., Wu, C., Du, Q.: Object tracking in satellite videos by fusing the kernel correlation filter and the three-frame-difference algorithm. IEEE Geosci. Remote Sens. Lett. 15, 168–172 (2018)

    ADS  Google Scholar 

  51. Yang, X., Li, F., Lu, M., et al.: Moving object detection method of video satellite based on tracking correction detection. ISPRS Ann. Photogram. Remote Sens. Spat. Inform. Sci. 3, 701–707 (2020)

    Google Scholar 

  52. Yin, Q., Liu, T., Lin, Z., et al.: Moving object detection in satellite videos via spatial-temporal tensor model and weighted schatten p-norm minimization. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  53. Li, H., Man, Y.: Moving ship detection based on visual saliency for video satellite, In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1248–1250 (2016)

  54. Lei, J., Dong, Y., Sui, H.: Tiny moving vehicle detection in satellite video with constraints of multiple prior information. Int. J. Remote Sens. 42(11), 4110–4125 (2021)

    ADS  Google Scholar 

  55. Zheng, D., Zhang, Y., Xiao, Z.: Deep learning-driven gaussian modeling and improved motion detection algorithm of the three-frame difference method. Mob. Inform. Syst. 2021, 1–7 (2021)

    CAS  Google Scholar 

  56. Kim, W.J., Hwang, S., Lee, J., Woo, S.: AIBM: accurate and instant background modeling for moving object detection. IEEE Trans. Intell. Transp. Syst. 23(7), 9021–9036 (2022)

    Google Scholar 

Download references

Funding

This work was supported in part by the NSFC (62133001, 61520106010) and the National Basic Research Program of China (973 Program: 2012CB821200, 2012CB821201).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization contributed by W.P. (Wenjing Pei), Z.S. (Zhanhao Shi) and K.G. (Kai Gong); methodology contributed by W.P. and Z.S.; experiments contributed by Z.S. and W.P.; writing the original contributed by W.P. and Z.S.; revised by W.P., Z.S. and K.G. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wenjing Pei.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, W., Shi, Z. & Gong, K. Moving object detection in satellite videos based on an improved ViBe algorithm. SIViP 18, 2543–2557 (2024). https://doi.org/10.1007/s11760-023-02929-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02929-w

Keywords

Navigation