Skip to main content

Advertisement

Log in

Comparative efficacy of histogram-based local descriptors and CNNs in the MRI-based multidimensional feature space for the differential diagnosis of Alzheimer’s disease: a computational neuroimaging approach

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The utilisation of magnetic resonance imaging (MRI) images for the automated detection of Alzheimer’s disease has garnered significant attention in recent years. This interest stems from the progress made in machine learning techniques and the possible application of such methods in the field of diagnostics. This study aims to evaluate the performance of 16 histogram-based image texture descriptors and features extracted from 18 pre-trained convolutional neural networks in characterising brain patterns observed in 2D slices of MRI images. The primary objective is to determine the most effective feature types for this task. The characteristics were taken from the magnetic resonance imaging (MRI) dataset given by the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The study involved the calculation of features on 2D axial, coronal, and sagittal slices, followed by classification using five binary machine learning algorithms. The objective was to differentiate between individuals with normal cognitive function and those diagnosed with Alzheimer’s disease. The proposed methodology additionally facilitated the identification of specific brain areas to be selected for each axis, in order to achieve optimal accuracy. This involved determining the matching feature and classifier combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The ADNI dataset can be obtained by going through the application process, which includes acceptance of the Data Use Agreement and submission of an online application form that can be found at https://adni.loni.usc.edu/.

References

  1. International, A.D.: Dementia statistics (2023)

  2. Afzal, S., Maqsood, M., Khan, U., Mehmood, I., Nawaz, H., Aadil, F., Song, O.-Y., Yunyoung, N.: Alzheimer disease detection techniques and methods: a review (2021)

  3. Beheshti, I., Maikusa, N., Daneshmand, M., Matsuda, H., Demirel, H., Anbarjafari, G., et al.: Classification of alzheimer’s disease and prediction of mild cognitive impairment conversion using histogram-based analysis of patient-specific anatomical brain connectivity networks. J. Alzheimer’s Dis. 60(1), 295–304 (2017)

    Article  Google Scholar 

  4. Beheshti, I., Maikusa, N., Matsuda, H., Demirel, H., Anbarjafari, G., et al.: Histogram-based feature extraction from individual gray matter similarity-matrix for alzheimer’s disease classification. J. Alzheimer’s Dis. 55(4), 1571–1582 (2017)

    Article  Google Scholar 

  5. Elshatoury, H., Avots, E., Anbarjafari, G., Initiative, A.D.N., et al.: Volumetric histogram-based alzheimer’s disease detection using support vector machine. J. Alzheimer’s Dis. 72(2), 515–524 (2019)

    Article  Google Scholar 

  6. Sunderland, T., Hill, J.L., Mellow, A.M., Lawlor, B.A., Gundersheimer, J., Newhouse, P.A., Grafman, J.H.: Clock drawing in alzheimer’s disease: a novel measure of dementia severity. J. Am. Geriatr. Soc. 37(8), 725–729 (1989)

    Article  CAS  PubMed  Google Scholar 

  7. Avots, E., Jermakovs, K., Bachmann, M., Päeske, L., Ozcinar, C., Anbarjafari, G.: Ensemble approach for detection of depression using eeg features. Entropy 24(2), 211 (2022)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Arafa, D.A., Moustafa, H.E.-D., Ali-Eldin, A.M., Ali, H.A.: Early detection of alzheimer’s disease based on the state-of-the-art deep learning approach: a comprehensive survey. Multimed. Tools Appl. 81(17), 23735–23776 (2022)

    Article  Google Scholar 

  9. Aktas, K., Ignjatovic, V., Ilic, D., Marjanovic, M., Anbarjafari, G.: Deep convolutional neural networks for detection of abnormalities in chest x-rays trained on the very large dataset. Signal Image Video Process. 17(4), 1035–1041 (2023)

    Article  PubMed  Google Scholar 

  10. Sham, A.H., Tikka, P., Lamas, D., Anbarjafari, G.: Automatic reaction emotion estimation in a human-human dyadic setting using deep neural networks. Signal Image Video Process. 17(2), 527–534 (2023)

    Article  Google Scholar 

  11. Lu, J., Liong, V.E., Zhou, X., Zhou, J.: Learning compact binary face descriptor for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2041–2056 (2015)

    Article  PubMed  Google Scholar 

  12. Turan, C., Lam, K.-M.: Histogram-based local descriptors for facial expression recognition (fer): a comprehensive study. J. Vis. Commun. Image Represent. 55, 331–341 (2018)

    Article  Google Scholar 

  13. Kumar, T.S., Rajesh, K.N., Maheswari, S., Kanhangad, V., Acharya, U.R.: Automated schizophrenia detection using local descriptors with eeg signals. Eng. Appl. Artif. Intell. 117, 105602 (2023)

    Article  Google Scholar 

  14. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893. IEEE (2005)

  16. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007)

  17. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Image and Signal Processing: 3rd International Conference, ICISP 2008. Cherbourg-Octeville, France, July 1-3, 2008. Proceedings 3, pp. 236–243. Springer (2008)

  18. Dhall, A., Asthana, A., Goecke, R., Gedeon, T.: Emotion recognition using phog and lpq features. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 878–883. IEEE (2011)

  19. Macin, G., Tasci, B., Tasci, I., Faust, O., Barua, P.D., Dogan, S., Tuncer, T., Tan, R.-S., Acharya, U.R.: An accurate multiple sclerosis detection model based on exemplar multiple parameters local phase quantization: Exmplpq. Appl. Sci. 12(10), 4920 (2022)

    Article  CAS  Google Scholar 

  20. Mohammad, T., Ali, M.L.: Robust facial expression recognition based on local monotonic pattern (lmp). In: 14th International Conference on Computer and Information Technology (ICCIT 2011), pp. 572–576. IEEE (2011)

  21. Jabid, T., Chae, O.: Local transitional pattern: A robust facial image descriptor for automatic facial expression recognition. In: Proceedings of the International Conference on Computer Convergence Technology, Seoul, Korea, pp. 333–344 (2011)

  22. Jabid, T., Chae, O.: Facial expression recognition based on local transitional pattern. Int. Inf. Inst. (Tokyo) Inf. 15(5), 2007 (2012)

    Google Scholar 

  23. Yang, M., Zhang, L., Shiu, S.C.-K., Zhang, D.: Monogenic binary coding: an efficient local feature extraction approach to face recognition. IEEE Trans. Inf. Forensics Secur. 7(6), 1738–1751 (2012)

    Article  ADS  Google Scholar 

  24. Lu, J., Liong, V.E., Zhou, J.: Cost-sensitive local binary feature learning for facial age estimation. IEEE Trans. Image Process. 24(12), 5356–5368 (2015)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  25. Zhou, L., Wang, H.: Local gradient increasing pattern for facial expression recognition. In: 2012 19th IEEE International Conference on Image Processing, pp. 2601–2604. IEEE (2012)

  26. Rivera, A.R., Castillo, J.R., Chae, O.O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22(5), 1740–1752 (2012)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  27. Ahmed, F.: Gradient directional pattern: a robust feature descriptor for facial expression recognition. Electron. Lett. 48(19), 1203–1204 (2012)

    Article  ADS  Google Scholar 

  28. Chu, W.: Facial expression recognition based on local binary pattern and gradient directional pattern. In: 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1458–1462. IEEE (2013)

  29. Rao, R.V., Prasad, T.: A new optimized hybrid local lifting wavelet co-occurrence texture pattern for content based medical image retrieval. Int. J. Online Biomed. Eng. 17(11) (2021)

  30. Li, S., Gong, D., Yuan, Y.: Face recognition using weber local descriptors. Neurocomputing 122, 272–283 (2013)

    Article  Google Scholar 

  31. Liu, S., Zhang, Y., Liu, K.: Facial expression recognition under partial occlusion based on weber local descriptor histogram and decision fusion. In: Proceedings of the 33rd Chinese Control Conference, pp. 4664–4668. IEEE (2014)

  32. Islam, M.S., Auwatanamo, S.: Facial expression recognition using local arc pattern. Trends Appl. Sci. Res. 9(2), 113 (2014)

    Article  Google Scholar 

  33. Islam, M.S.: Local gradient pattern-a novel feature representation for facial expression recognition. J. AI Data Min. 2(1), 33–38 (2014)

    Google Scholar 

  34. Bashar, F., Khan, A., Ahmed, F., Kabir, M.H.: Robust facial expression recognition based on median ternary pattern (mtp). In: 2013 International Conference on Electrical Information and Communication Technology (EICT), pp. 1–5. IEEE (2014)

  35. Rivera, A.R., Castillo, J.R., Chae, O.: Local directional texture pattern image descriptor. Pattern Recognit. Lett. 51, 94–100 (2015)

    Article  ADS  Google Scholar 

  36. Yang, B.-Q., Zhang, T., Gu, C.-C., Wu, K.-J., Guan, X.-P.: A novel face recognition method based on iwld and iwbc. Multimed. Tools Appl. 75, 6979–7002 (2016)

    Article  Google Scholar 

  37. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  38. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  39. Ashraf, A., Naz, S., Shirazi, S.H., Razzak, I., Parsad, M.: Deep transfer learning for alzheimer neurological disorder detection. Multimed. Tools Appl. 1–26 (2021)

  40. Suk, H.-I., Lee, S.-W., Shen, D., Initiative, A.D.N., et al.: Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis. NeuroImage 101, 569–582 (2014)

    Article  PubMed  Google Scholar 

  41. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1, NIPS’12, (Red Hook, NY, USA), pp. 1097–1105. Curran Associates Inc. (2012)

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  43. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  44. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

  45. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  46. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\) 0.5 mb model size. arXiv:1602.07360 (2016)

  47. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

  48. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

  49. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

  50. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

  51. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

  52. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

  53. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

  54. Nayaki, K.S., Varghese, A.: Alzheimer’s detection at early stage using local measures on mri: a comparative study on local measures. In: 2014 International Conference on Data Science & Engineering (ICDSE), pp. 224–227. IEEE (2014)

  55. Ben Ahmed, O., Benois-Pineau, J., Allard, M., Ben Amar, C., Catheline, G., Initiative, A.D.N.: Classification of alzheimer’s disease subjects from mri using hippocampal visual features. Multimed. Tools Appl. 74, 1249–1266 (2015)

  56. Sarwinda, D., Bustamam, A.: 3d-hog features–based classification using mri images to early diagnosis of alzheimer’s disease. In: 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), pp. 457–462. IEEE (2018)

  57. Altaf, T., Anwar, S.M., Gul, N., Majeed, M.N., Majid, M.: Multi-class alzheimer’s disease classification using image and clinical features. Biomed. Signal Process. Control 43, 64–74 (2018)

    Article  Google Scholar 

  58. Cao, P., Gao, J., Zhang, Z.: Multi-view based multi-model learning for mci diagnosis. Brain Sci. 10(3), 181 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cohen, D.S., Carpenter, K.A., Jarrell, J.T., Huang, X., Initiative, A.D.N., et al.: Deep learning-based classification of multi-categorical alzheimer’s disease data. Curr. Neurobiol. 10(3), 141 (2019)

    PubMed  PubMed Central  Google Scholar 

  60. Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., Filippi, M., Initiative, A.D.N., et al.: Automated classification of alzheimer’s disease and mild cognitive impairment using a single mri and deep neural networks. NeuroImage Clin. 21, 101645 (2019)

    Article  PubMed  Google Scholar 

  61. Kumar, P.S., Dharun, V.: A study of mri segmentation methods in automatic brain tumor detection. Int. J. Eng. Technol. 8(2), 609–614 (2016)

    CAS  Google Scholar 

  62. Gudadhe, S.S., Thakare, A.D., Oliva, D.: Classification of intracranial hemorrhage ct images based on texture analysis using ensemble-based machine learning algorithms: A comparative study. Biomed. Signal Process. Control 84, 104832 (2023)

    Article  Google Scholar 

  63. Stanley, B.F., Franklin, S.W.: Effective feature extraction for cerebral microbleed detection using edge emphasized weber maximum directional co-occurance matrix. J. Ambient Intell. Humaniz. Comput. 1–14 (2022)

  64. Saif, A., Imtiaz, T., Shahnaz, C., Zhu, W.-P., Ahmad, M.O.: Exploiting cascaded ensemble of features for the detection of tuberculosis using chest radiographs. IEEE Access 9, 112388–112399 (2021)

    Article  Google Scholar 

  65. Bramarambika, M.: Brain tumor classification for mr images using hybrid glcm-ldtp-le-net feature extraction and bi-lstm model. Int. J. Intell. Eng. Syst. 15(2) (2022)

  66. Mwadulo, M.W.: Alocal directional ternary pattern texture descriptor for mammographic breast cancer classification. PhD thesis, MMUST (2020)

  67. Uplaonkar, D.S., Virupakshappa, Patil, N.: Modified otsu thresholding based level set and local directional ternary pattern technique for liver tumor segmentation. Int. J. Syst. Assur. Eng. Manag. 1–11 (2022)

  68. Hassan, W.A., Ali, Y.H., Ibrahim, N.J.: A survey of latest techniques in medical image classification. In: 2021 International Conference on Communication & Information Technology (ICICT), pp. 68–73. IEEE (2021)

  69. Khasawneh, R.R., Abu-El-Rub, E., Alzu’bi, A., Abdelhady, G.T., Al-Soudi, H.S.: Corpus callosum anatomical changes in alzheimer patients and the effect of acetylcholinesterase inhibitors on corpus callosum morphometry. PLoS One 17(7), e0269082 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, J., Wang, P., Li, Y., Zhou, Y., Liu, X., Luan, K.: Transfer learning of pre-trained inception-v3 model for colorectal cancer lymph node metastasis classification. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1650–1654. IEEE (2018)

  71. Shoaib, M., Sayed, N.: Yolo object detector and inception-v3 convolutional neural network for improved brain tumor segmentation. Traitement Du Signal 39(1) (2022)

  72. Singh, R., Sharma, N., Gupta, R.: Detection of alzheimer’s risk level using inception v3 transfer learning model. in: 2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), pp. 1–6. IEEE (2023)

  73. Li, P., Quan, W., Wang, Z., Liu, Y., Cai, H., Chen, Y., Wang, Y., Zhang, M., Tian, Z., Zhang, H., et al.: Early-stage differentiation between alzheimer’s disease and frontotemporal lobe degeneration: Clinical, neuropsychology, and neuroimaging features. Front. Aging Neurosci. 14, 981451 (2022)

  74. Lindau, M., Almkvist, O., Kushi, J., Boone, K., Johansson, S., Wahlund, L., Cummings, J., Miller, B.: First symptoms-frontotemporal dementia versus alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 11(5), 286–293 (2000)

  75. Roe, J.M., Vidal-Piñeiro, D., Sørensen, Ø., Brandmaier, A.M., Düzel, S., Gonzalez, H.A., Kievit, R.A., Knights, E., Kühn, S., Lindenberger, U., et al.: Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in alzheimer’s disease. Nat. Commun. 12(1), 721 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organisation is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Funding

None.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

E. Avots developed the methodology and conducted experiments. A. A. Jafari worked on data preprocessing and conducted experiments. E. Avots, A. A. Jafari, C. Ozcinar wrote the main manuscript text. C. Ozcinar was the main article editor. G. Anbarjafari guided the research process. Alzheimer’s Disease Neuroimaging Initiative (ADNI) provided the MRI data and ADNI Data and Publications Committee (DPC) conducted preliminary revision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Egils Avots.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

ADNI conducts research according to Good Clinical Practice guidelines, US 21CFR Part 50- Protection of Human Subjects, and Part 56 - Institutional Review Boards (IRBs) / Research Ethics Boards (REBs), and pursuant to state and federal HIPAA regulations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avots, E., Jafari, A.A., Ozcinar, C. et al. Comparative efficacy of histogram-based local descriptors and CNNs in the MRI-based multidimensional feature space for the differential diagnosis of Alzheimer’s disease: a computational neuroimaging approach. SIViP 18, 2709–2721 (2024). https://doi.org/10.1007/s11760-023-02942-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02942-z

Keywords

Navigation