Skip to main content
Log in

A3R-Net: adaptive attention aggregation residual network for sparse DOA estimation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a unified deep learning framework is developed for high-precision direction-of-arrival (DOA) estimation. Unlike previous methods that divide the real and imaginary parts of complex-valued sparse problem into two separate input channels, a real-valued transformation is adopted to encode the correlation between them. Then, a novel adaptive attention aggregation residual network (A3R-Net) is designed to overcome the challenges in the case of low signal-to-noise ratios or small inter-signal angle separations. First, to alleviate the gradient disappearance and gradient explosion caused by network deepening, a residual learning strategy is introduced to construct a deep estimation network that learns the inverse mapping from the array measurement vector to the original spatial spectrum. Second, since the feature fusion method via simple summation in the shortcut connection ignores the inconsistency on the scale and semantic of features, an adaptive attention aggregation module (A3M) with adaptive channel context aggregators is proposed to capture multi-scale channel contexts and generate element-wise fusion weights. Finally, a dilated convolution with a broader receptive field is embedded into the channel context aggregator to learn wider local cross-channel association. Extensive simulation results demonstrate the superiority and robustness of the proposed method compared with other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13, 67–94 (1996)

    Article  ADS  Google Scholar 

  2. Zhang, X., Xu, L., Xu, L., Xu, D.: Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Commun. Lett. 14, 1161–1163 (2010)

    Article  ADS  Google Scholar 

  3. Wang, H., Wan, L., Dong, M., Ota, K., Wang, X.: Assistant vehicle localization based on three collaborative base stations via SBL-based robust DOA estimation. IEEE Internet Things J. 6, 5766–5777 (2019)

    Article  Google Scholar 

  4. Hu, D., Zhang, Y., He, L., Wu, J.: Low-complexity deep-learning-based DOA estimation for hybrid massive MIMO systems with uniform circular arrays. IEEE Wirel. Commun. Lett. 9, 83–86 (2020)

    Article  Google Scholar 

  5. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  ADS  Google Scholar 

  6. Rao, B.D., Hari, K.V.S.: Performance analysis of root-MUSIC. IEEE Trans. Acoust. Speech Signal Process. 37, 1939–1949 (1989)

    Article  Google Scholar 

  7. Roy, R., Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37, 984–995 (1989)

    Article  Google Scholar 

  8. Roy, R., Paulraj, A., Kailath, T.: ESPRIT–a subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 34, 1340–1342 (1986)

    Article  Google Scholar 

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  10. Yang, Z., Li, J., Stoica, P., Xie, L.: Sparse methods for direction-of-arrival estimation. In: Academic Press Library in Signal Processing, vol. 7, pp. 509–581. Elsevier (2018)

  11. Malioutov, D., Cetin, M., Willsky, A.S.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53, 3010–3022 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Liu, Z.-M., Huang, Z.-T., Zhou, Y.-Y.: Sparsity-inducing direction finding for narrowband and wideband signals based on array covariance vectors. IEEE Trans. Wirel. Commun. 12, 1–12 (2013)

    Article  Google Scholar 

  13. Dai, J., So, H.C.: Real-valued sparse bayesian learning for DOA estimation with arbitrary linear arrays. IEEE Trans. Signal Process. 69, 4977–4990 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Liu, Z.-M., Zhang, C., Yu, P.S.: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections. IEEE Trans. Antennas Propag. 66, 7315–7327 (2018)

    Article  ADS  Google Scholar 

  16. Wu, L., Liu, Z.-M., Huang, Z.-T.: Deep convolution network for direction of arrival estimation with sparse prior. IEEE Signal Process. Lett. 26, 1688–1692 (2019)

    Article  ADS  Google Scholar 

  17. Guo, Y., Zhang, Z., Huang, Y., Zhang, P.: DOA estimation method based on cascaded neural network for two closely spaced sources. IEEE Signal Process. Lett. 27, 570–574 (2020)

    Article  ADS  Google Scholar 

  18. Papageorgiou, G., Sellathurai, M., Eldar, Y.: Deep networks for direction-of-arrival estimation in low SNR. IEEE Trans. Signal Process. 69, 3714–3729 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  19. Doan, V.-S., Huynh-The, T., Hoang, V.-P., Nguyen, D.-T.: MoDANet: multi-task deep network for joint automatic modulation classification and direction of arrival estimation. IEEE Commun. Lett. 26, 335–339 (2022)

    Article  Google Scholar 

  20. Xu, S., Brighente, A., Chen, B., Conti, M., Cheng, X., Zhu, D.: Deep neural networks for direction of arrival estimation of multiple targets with sparse prior for line-of-sight scenarios. IEEE Trans. Veh. Technol. 72, 4683–4696 (2023)

    Article  Google Scholar 

  21. Fan, R., Si, C., Yi, W., Wan, Q.: YOLO-DoA: a new data-driven method of doa estimation based on YOLO neural network framework. IEEE Sens. Lett. 7, 1–4 (2023)

    Article  CAS  Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778. IEEE, Las Vegas, NV, USA (2016).

  23. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 936–944. IEEE, Honolulu, HI (2017).

  24. Wu, F., Xu, T., Guo, J., Huang, B., Xu, C., Wang, J., Li, X.: Deep siamese cross-residual learning for robust visual tracking. IEEE Internet Things J. 8, 15216–15227 (2021)

    Article  Google Scholar 

  25. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2011–2023 (2020)

    Article  PubMed  Google Scholar 

  26. Huang, B., Xu, T., Shen, Z., Jiang, S., Zhao, B., Bian, Z.: SiamATL: online update of siamese tracking network via attentional transfer learning. IEEE Trans. Cybern. 52, 7527–7540 (2022)

    Article  ADS  PubMed  Google Scholar 

  27. Huang, B., Xu, T., Li, J., Luo, F., Qin, Q., Chen, J.: Learning context restrained correlation tracking filters via adversarial negative instance generation. IEEE Trans. Neural Netw. Learn. Syst. 34, 6132–6145 (2023)

    Article  PubMed  Google Scholar 

  28. Li, X., Wang, W., Hu, X., Yang, J.: Selective Kernel networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 510–519. IEEE, Long Beach, CA, USA (2019)

  29. Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., Li, M., Smola, A.: ResNeSt: split-attention networks. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 2735–2745. IEEE, New Orleans, LA, USA (2022)

  30. Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 3559–3568 (2021)

  31. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: Efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 11531–11539 (2020)

  32. Yu, F., Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions (2016). http://arxiv.org/abs/1511.07122

  33. Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., Cottrell, G.: Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 1451–1460. IEEE, Lake Tahoe, NV (2018)

  34. Liu, C.-L., Vaidyanathan, P.P.: Cramér–Rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digit. Signal Process. 61, 43–61 (2017)

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

QX and QH wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qinghua Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Huang, Q. A3R-Net: adaptive attention aggregation residual network for sparse DOA estimation. SIViP 18, 2939–2949 (2024). https://doi.org/10.1007/s11760-023-02961-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02961-w

Keywords

Navigation