Skip to main content
Log in

Adapted type-II fuzzy algorithm to process images with non-uniform illumination

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Digital images express information efficiently and powerfully by illustrating complex ideas, scenes, concepts, and emotions. Their usefulness can diminish if their information is not displayed clearly. Digital images are not always obtained in a clear-detail state as their clarity depends on numerous factors including the lighting conditions of the scene. The non-uniform illumination effect occurs in digital images when the light is not evenly allocated across the image. This results in certain areas appearing brighter or darker than others, which decreases the image quality and affects its usefulness for various applications. Thus, an adapted type-II fuzzy (ATF) algorithm is introduced to process the non-uniform illumination and produce images with more correct illumination. It begins by receiving the input and converting it to the HSV domain, where only the V channel is processed while the H and S channels are preserved. Next, the V channel is fuzzified and the upper and lower bounds are computed using two curvy transforms followed by determining the variance of the fuzzified channel. After that, the Hamacher T-conorm is computed, and the histogram of its output is stretched using a modified approach. Next, the tonality is adjusted using an amended method, and the output is converted back to the RGB domain as a last step. The ATF algorithm is tested with a dataset of more than two hundred images, appraised against eight different algorithms, and the quality of the outputs is evaluated using six sophisticated methods. The ATF has shown various results that own much better illumination, satisfactory contrast, intense colors, and appeared with better details, as well as outperformed the comparison methods according to the evaluation scores, runtimes, and visual appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data of this study will be available upon a valid request.

References

  1. Whitty, M.T., Doodson, J., Creese, S., Hodges, D.: A picture tells a thousand words: What facebook and twitter images convey about our personality. Pers. Individ. Dif. 133, 109–114 (2018). https://doi.org/10.1016/j.paid.2016.12.050

    Article  Google Scholar 

  2. Tang, X., Luo, W., Wang, X.: Content-based photo quality assessment. IEEE Trans. Multimed. 15, 1930–1943 (2013). https://doi.org/10.1109/tmm.2013.2269899

    Article  Google Scholar 

  3. Lu, K., Zhang, L.: TBEFN: a two-branch exposure-fusion network for low-light image enhancement. IEEE Trans. Multimed. 23, 4093–4105 (2021). https://doi.org/10.1109/tmm.2020.3037526

    Article  Google Scholar 

  4. Tripathi, S.K., Gupta, B., Tiwari, M.: An alternative approach to preserve naturalness with non-uniform illumination estimation for images enhancement using normalized L2-Norm based on Retinex. Multidimens. Syst. Signal Process. 31, 1091–1112 (2020). https://doi.org/10.1007/s11045-020-00700-9

    Article  Google Scholar 

  5. Prakash, S., Rastogi, S., Gupte, S.M., Duttagupta, S.P.: Power optimisation of small scale SPV array using field programmable reconfiguration topology for dynamic non-uniform illumination state. J. Eng. 2020, 197–206 (2020). https://doi.org/10.1049/joe.2018.5183

    Article  Google Scholar 

  6. Salih, A.A., Al-Khannaq, M., Hasikin, K., Isa, N.A.: Adaptive local exposure based region determination for non-uniform illumination and low contrast images. Alex. Eng. J. 61, 11185–11195 (2022). https://doi.org/10.1016/j.aej.2022.04.023

    Article  Google Scholar 

  7. Tan, S.F., Isa, N.A.M.: Exposure based multi-histogram equalization contrast enhancement for non-uniform illumination images. IEEE Access. 7, 70842–70861 (2019). https://doi.org/10.1109/access.2019.2918557

    Article  Google Scholar 

  8. Xu, Y., Yang, C., Sun, B., Yan, X., Chen, M.: A novel multi-scale fusion framework for detail-preserving low-light image enhancement. Inf. Sci. 548, 378–397 (2021). https://doi.org/10.1016/j.ins.2020.09.066

    Article  MathSciNet  Google Scholar 

  9. Han, J., Hong, S., Kang, M.G.: Canonical illumination decomposition and its applications. IEEE Trans. Circuits Syst. Video Technol. 30, 4158–4170 (2020). https://doi.org/10.1109/tcsvt.2019.2960545

    Article  Google Scholar 

  10. Wu, Y., Zheng, J., Song, W., Liu, F.: Low light image enhancement based on non-uniform illumination prior model. IET Image Process. 13, 2448–2456 (2019). https://doi.org/10.1049/iet-ipr.2018.6208

    Article  Google Scholar 

  11. Dey, N.: Uneven illumination correction of digital images: a survey of the state-of-the-art. Optik 183, 483–495 (2019). https://doi.org/10.1016/j.ijleo.2019.02.118

    Article  Google Scholar 

  12. Domislović, I., Vršnjak, D., Subašić, M., Lončarić, S.: Color constancy for non-uniform illumination estimation with variable number of illuminants. Neural Comput. Appl. 35, 14825–14835 (2023). https://doi.org/10.1007/s00521-023-08487-z

    Article  Google Scholar 

  13. Zhang, W., Liu, W., Li, L., Jiao, H., Li, Y., Guo, L., Xu, J.: A framework for the efficient enhancement of non-uniform illumination underwater image using convolution neural network. Comput. Graph. 112, 60–71 (2023). https://doi.org/10.1016/j.cag.2023.03.004

    Article  Google Scholar 

  14. Dash, S., Parida, P., Mohanty, J.R.: Illumination robust deep convolutional neural network for medical image classification. Soft. Comput. (2023). https://doi.org/10.1007/s00500-023-07918-2

    Article  Google Scholar 

  15. Ait Bella, F.Z., Hakim, M., El Mourabit, I., Raghay, S.: A p-Laplacian model for uneven illumination enhancement of document images. J. Math. Model. 11, 157–169 (2023)

    MathSciNet  Google Scholar 

  16. Wang, T., Zhang, J., Zhang, S., Zhang, X., Wang, J.: A combined computer vision and image processing method for surface coverage measurement of shot peen forming. J. Manuf. Process. 91, 137–148 (2023). https://doi.org/10.1016/j.jmapro.2023.02.035

    Article  Google Scholar 

  17. Fu X, Sun Y, LiWang M, Huang Y, Zhang X-P, Ding X (2014) A novel retinex based approach for image enhancement with illumination adjustment. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE. https://doi.org/10.1109/ICASSP.2014.6853785

  18. Shin, Y., Jeong, S., Lee, S.: Efficient naturalness restoration for non-uniform illumination images. IET Image Process. 9, 662–671 (2015). https://doi.org/10.1049/iet-ipr.2014.0437

    Article  Google Scholar 

  19. Fu X, Zeng D, Huang Y, Zhang X-P, Ding X (2016) A weighted variational model for simultaneous reflectance and illumination estimation. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE https://doi.org/10.1109/CVPR.2016.304

  20. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic-extrinsic prior model for retinex. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE (2017). https://doi.org/10.1109/ICCV.2017.431

  21. Li, C., Guo, J., Porikli, F., Pang, Y.: LightenNet: a convolutional neural network for weakly illuminated image enhancement. Pattern Recognit. Lett. 104, 15–22 (2018). https://doi.org/10.1016/j.patrec.2018.01.010

    Article  Google Scholar 

  22. Fu G, Duan L, Xiao C (2019) A hybrid L2−LP variational model for single low-light image enhancement with bright channel prior. In: 2019 IEEE international conference on image processing (ICIP). IEEE. https://doi.org/10.1109/ICIP.2019.8803197

  23. Hao, S., Han, X., Guo, Y., Xu, X., Wang, M.: Low-light image enhancement with semi-decoupled decomposition. IEEE Trans. Multimed. 22, 3025–3038 (2020). https://doi.org/10.1109/tmm.2020.2969790

    Article  Google Scholar 

  24. Mu, Q., Wang, X., Wei, Y., Li, Z.: Low and non-uniform illumination color image enhancement using weighted guided image filtering. Comput. Vis. Media. 7, 529–546 (2021). https://doi.org/10.1007/s41095-021-0232-x

    Article  Google Scholar 

  25. Wu, X., Wu, B., He, J., Fang, B., Shang, Z., Zhou, M.: A structure preservation and denoising low-light enhancement model via coefficient of variation. Intern. J. Pattern Recognit. Artif. Intell. 36, 2254018 (2022). https://doi.org/10.1142/s0218001422540180

    Article  Google Scholar 

  26. Hassan, M.F., Adam, T., Rajagopal, H., Paramesran, R.: A hue preserving uniform illumination image enhancement via triangle similarity criterion in HSI color space. Vis. Comput. 39, 6755–6766 (2023). https://doi.org/10.1007/s00371-022-02761-2

    Article  Google Scholar 

  27. Bi, X., Li, M., Zha, F., Guo, W., Wang, P.: A non-uniform illumination image enhancement method based on fusion of events and frames. Optik 272, 170329 (2023). https://doi.org/10.1016/j.ijleo.2022.170329

    Article  Google Scholar 

  28. Chaira, T.: An improved medical image enhancement scheme using Type II fuzzy set. Appl. Soft Comput. 25, 293–308 (2014). https://doi.org/10.1016/j.asoc.2014.09.004

    Article  Google Scholar 

  29. Tang, H., Fei, L., Zhu, H., Tao, H., Xie, C.: A two-stage network for zero-shot low-illumination image restoration. Sensors. 23, 792 (2023). https://doi.org/10.3390/s23020792

    Article  Google Scholar 

  30. Yang, X., Gong, J., Wu, L., Yang, Z., Shi, Y., Nie, F.: Reference-free low-light image enhancement by associating hierarchical wavelet representations. Expert Syst. Appl. 213, 118920 (2023). https://doi.org/10.1016/j.eswa.2022.118920

    Article  Google Scholar 

  31. Ateeq, K., Qasim, T.B., Alvi, A.R.: An extension of Rayleigh distribution and applications. Cogent Math. Stat. 6, 1622191 (2019). https://doi.org/10.1080/25742558.2019.1622191

    Article  MathSciNet  Google Scholar 

  32. Baiju, P.S., George, S.N.: L1/2 regularized joint low rank and sparse recovery technique for illumination map estimation in low light image enhancement. J. Ambient. Intell. Humaniz. Comput. 13, 903–920 (2022). https://doi.org/10.1007/s12652-021-02947-x

    Article  Google Scholar 

  33. Li, B., Li, Y.E., Yang, J.: Q-interface imaging using accumulative attenuation estimation. Geophysics 85, R509–R523 (2020). https://doi.org/10.1190/geo2019-0759.1

    Article  Google Scholar 

  34. Hu, M., Zhong, Y., Xie, S., Lv, H., Lv, Z.: Fuzzy system based medical image processing for brain disease prediction. Front. Neurosci. 15, 714318 (2021). https://doi.org/10.3389/fnins.2021.714318

    Article  Google Scholar 

  35. Hassan, M., Suhail Shaikh, M., Jatoi, M.A.: Image quality measurement-based comparative analysis of illumination compensation methods for face image normalization. Multimed. Syst. 28, 511–520 (2022). https://doi.org/10.1007/s00530-021-00853-y

    Article  Google Scholar 

  36. Rahman, S., Rahman, M.M., Abdullah-Al-Wadud, M., Al-Quaderi, G.D., Shoyaib, M.: An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process. 2016, 1–13 (2016). https://doi.org/10.1186/s13640-016-0138-1

    Article  Google Scholar 

  37. Zhang Z, Sun W, Min X, Zhu W, Wang T, Lu W, Zhai G (2021) A no-reference evaluation metric for low-light image enhancement. In: 2021 IEEE international conference on multimedia and expo (ICME). IEEE. https://doi.org/10.1109/ICME51207.2021.9428312

  38. Lin, W., Wu, Y., Xu, L., Chen, W., Zhao, T., Wei, H.: No-reference quality assessment for low-light image enhancement: subjective and objective methods. Displays 78, 102432 (2023). https://doi.org/10.1016/j.displa.2023.102432

    Article  Google Scholar 

  39. Babburu, K.: PAPR reduction techniques and image quality assessment in image based MMS VLC system. Inform. Technol. Indust. 9, 1178–1185 (2021)

    Article  Google Scholar 

  40. Fons, F., Fons, M., Cantó, E.: Run-time self-reconfigurable 2D convolver for adaptive image processing. Microelectronics. 42, 204–217 (2011). https://doi.org/10.1016/j.mejo.2010.08.008

    Article  Google Scholar 

  41. He, Q., Yang, C., Yang, F., An, P.: Unsupervised blind image quality assessment based on joint structure and natural scene statistics features. J. Vis. Commun. Image Represent. 87, 103579 (2022). https://doi.org/10.1016/j.jvcir.2022.103579

    Article  Google Scholar 

  42. Gao, C., Panetta, K., Agaian, S.: Color image attribute and quality measurements. In mobile multimedia/image processing, security, and applications. SPIE (2014). https://doi.org/10.1117/12.2050197

    Article  Google Scholar 

  43. Deng, Z.H., Wang, M.J., Bai, X.P.: A new multi-focus image fusion algorithm based on contrast ratio and discrete wavelet frame transform. Adv. Mat. Res. 542–543, 1011–1018 (2012)

    Google Scholar 

Download references

Acknowledgements

I would like to express my sincere gratitude to the University of Mosul for their generous support during this research.

Author information

Authors and Affiliations

Authors

Contributions

I wrote the entire article.

Corresponding author

Correspondence to Zohair Al-Ameen.

Ethics declarations

Conflict of interest

I declare that there is no conflict of interest involved in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ameen, Z. Adapted type-II fuzzy algorithm to process images with non-uniform illumination. SIViP 18, 3109–3122 (2024). https://doi.org/10.1007/s11760-023-02974-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02974-5

Keywords

Navigation