Skip to main content
Log in

Frequency-difference MUSIC: a method for DOA estimation in inhomogeneous media

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, frequency-difference multiple signal classification (FD-MUSIC), a direction of arrival (DOA) method for high frequency signal source in inhomogeneous media, is proposed for an uniform linear array (ULA). In the FD-MUSIC method, the effect of inhomogeneity of media on DOA estimation results of high frequency signals with similar propagation pathes can be effectively suppressed by frequency-difference operation, so as to improve the robustness of DOA estimation. At the same time, combined with the idea of subspace decomposition in the MUSIC method, the DOA estimation azimuth resolution is improved. In order to ensure the DOA estimation performance of the FD-MUSIC method, it is required theoretically that the phase fluctuation of the frequency-difference signals caused by the inhomogeneity of media is far less than \(2\pi \), and the array element spacing of the ULA is less than half of the wavelength corresponding to the frequency-difference \(\Delta f\). Two sufficient condition for the FD-MUSIC are given in this paper and the performance of the FD-MUSIC method is analyzed by simulations. When the conditions required by the FD-MUSIC method are satisfied, simulation results show that the DOA estimation performance of the FD-MUSIC method is better than that of the conventional beamforming (CBF) method, the multiple signal classification (MUSIC) method, the frequency-difference beamforming (FDBF) method, and deconvolved frequency-difference beamforming (Dv-FDB) method in the presence of inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No applicable.

References

  1. Jin, M., Liao, G., Li, J.: Joint DOD and DOA estimation for bistatic mimo radar. Signal Process. 89(2), 244–251 (2009)

    Article  Google Scholar 

  2. Saucan, A.A., Chonavel, T., Sintes, C., Le Caillec, J.M.: CPHD-DOA tracking of multiple extended sonar targets in impulsive environments. IEEE Trans. Signal Process. 64(5), 1147–1160 (2015)

    Article  MathSciNet  Google Scholar 

  3. Markhi, H.E., Haibala, M., Mrabti, F., Charge, P., Zouak, M.: An improved cyclic beamforming method for signal DOA estimation. SIViP 1(3), 267–272 (2007)

    Article  Google Scholar 

  4. Benesty, J., Jingdong, J., Chen, H.Y.: Microphone Array Signal Processing, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  5. Van Veen, B.D., Buckley, K.M.: Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)

    Article  Google Scholar 

  6. Kailath, R., Royand, T.: Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  7. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  MathSciNet  Google Scholar 

  8. Ma, F., Zhang, X.: Wideband doa estimation based on focusing signal subspace. SIViP 13, 675–682 (2019)

    Article  Google Scholar 

  9. Ping, S.: Localized States and the Approach to Localization, pp. 243–279. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (2006)

  10. Foroozan, F., Asif, A.: Time reversal direction of arrival estimation with cramer-rao bound analysis. In: 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pp. 1–5. IEEE, (2010)

  11. Gurbuz, A.C., McClellan, J.H., Cevher, V.A.: compressive beamforming method. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2617–2620. IEEE, (2008)

  12. Zhu, W., Zhang, M., Li, P., Wu, C.: Two-dimensional doa estimation via deep ensemble learning. IEEE Access 8, 124544–124552 (2020)

    Article  Google Scholar 

  13. Zhang, Y., Wu, Y.I.: Multiple sources localization by the wsn using the direction-of-arrivals classified by the genetic algorithm. IEEE Access 7, 173626–173635 (2019)

    Article  Google Scholar 

  14. Chen, M., Gong, Y., Mao, X.: Deep neural network for estimation of direction of arrival with antenna array. IEEE Access 8, 140688–140698 (2020)

    Article  Google Scholar 

  15. Liu, Z., Zhan, C., Philip, S.Y.: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections. IEEE Trans. Antennas Propag. 66(12), 7315–7327 (2018)

    Article  Google Scholar 

  16. Chen, P., Cao, Z., Chen, Z., Wang, X.: Off-grid DOA estimation using sparse bayesian learning in mimo radar with unknown mutual coupling. IEEE Trans. Signal Process. 67(1), 208–220 (2018)

    Article  MathSciNet  Google Scholar 

  17. Abadi, S.H., Rouseff, D., Dowling, D.R.: Blind deconvolution for robust signal estimation and approximate source localization. J. Acoust. Soc. Am. 131(4), 2599–2610 (2012)

    Article  Google Scholar 

  18. Abadi, S.H., Song, H., Dowling, D.R.: Broadband sparse-array blind deconvolution using frequency-difference beamforming. J. Acoust. Soc. Am. 132(5), 3018–3029 (2012)

    Article  Google Scholar 

  19. Ishimaru, A.: Wave Propagation and Scattering in Random Media, vol. 2. Academic press, New York (1978)

    Google Scholar 

  20. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H., Tolstoy, A.: Computational Ocean Acoustics. Springer, New York (2011)

    Book  Google Scholar 

  21. Douglass, A.S., Dowling, D.R.: Frequency-difference beamforming in the presence of strong random scattering. J. Acoust. Soc. Am. 146(1), 122–134 (2019)

    Article  Google Scholar 

  22. Douglass, A.S., Song, H.C., Dowling, D.: Performance comparisons of frequency-difference and conventional beamforming. J. Acoust. Soc. Am. 142(3), 1663–1673 (2017)

    Article  Google Scholar 

  23. Xie, L., Sun, C., Tian, J.: Deconvolved frequency-difference beamforming for a linear array. J. Acoust. Soc. Am. 148(6), EL440–EL446 (2020)

    Article  Google Scholar 

  24. Park, Y., Gerstoft, P., Lee, J.: Difference-frequency music for doas. IEEE Signal Process. Lett. 29, 2612–2616 (2022)

    Article  Google Scholar 

  25. Lee, J., Park, Y., Gerstoft, P.: Compressive frequency-difference direction-of-arrival estimation. J. Acoust. Soc. Am. 154(1), 141–151 (2023)

    Article  Google Scholar 

  26. Colosi, J.A.: Sound Propagation through the Stochastic Ocean. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  27. Willmann-Bell, H.R., Suiter: Star Testing Astronomical Telescopes. Inc., (2001)

  28. Brekhovskikh, L.M., Lysanov, Y.P.: Fundamentals of Ocean Acoustics, (2004)

  29. Tournat, V., Pagneux, V., Lafarge, D., Jaouen, L.: Multiple scattering of acoustic waves and porous absorbing media. Phys. Rev. E 70(2), 026609 (2004)

    Article  Google Scholar 

  30. Derode, A., Mamou, V., Tourin, A.: Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium. Phys. Rev. E 74(3), 036606 (2006)

    Article  Google Scholar 

  31. Millette, P.A.: The heisenberg uncertainty principle and the nyquist-shannon sampling theorem. Prog. Phys. 9(3), 9–14 (2013)

    Google Scholar 

  32. Stoica, P., Nehorai, A.: MUSIC, maximum likelihood, and cramer-rao bound. IEEE Trans. Acoust. Speech Signal Process. 37(5), 720–741 (1989)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Z., Shi, Z., Gu, Y.: Ziv-zakai bound for doas estimation. IEEE Trans. Signal Process. 71, 136–149 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 52071309 and 52001296, the Taishan Scholars under Grant No. tsqn 201909053, and the Fundamental Research Funds for Central Universities under Grant Nos. 202161003, 202065005, 862001013102, 202165007.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.G. and S.Z.; methodology, X.L.; software, S.Z., X.L, W.G; validation, X.L., H.W. and L.W.; formal analysis, S.Z. and X.L; investigation, H.W. and L.W.; resources, S.Z. W.G.; data curation, S.Z.; writing-original draft preparation, X. L. and W.G.; writing-review and editing, S.Z., H.W. and L.W.; visualization, S.Z., X.L. and W.G.; supervision, L.W., H. W. and X.L.; project administration, W.G. and X.L. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaolei Li.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Ethical approval

No applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Zhu, S., Li, X. et al. Frequency-difference MUSIC: a method for DOA estimation in inhomogeneous media. SIViP 18, 7029–7040 (2024). https://doi.org/10.1007/s11760-024-03372-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-024-03372-1

Keywords