Skip to main content
Log in

Smartphone detector examination for transportation mode identification utilizing imbalanced maximizing-area under the curve proximal support vector machine

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The growing interest in utilizing smartphone detectors to distinguish between transportation modes stems from their applications in health monitoring, urban transport planning, and location-based services. This study introduces a model utilizing data from smartphone accelerometers, magnetometers, and gyroscopes to identify various transportation modes. The novel Imbalanced Maximizing-Area Under the Curve Proximal Support Vector Machine (ImAUC-PSVM) technique refines the conventional PSVM for automated transportation mode identification. The ImAUC-PSVM method brings several benefits: 1) It embeds AUC maximization within its objective function, streamlining the model by reducing the need for extensive parameter adjustments, thus making it highly suitable for training with imbalanced databases; 2) Theoretical examination confirms that ImAUC-PSVM preserves the fundamental structure of the standard PSVM, including its benefits, especially in situations that require rapid and ongoing updates for effective transportation mode classification. The model is enhanced by a specialized Differential Evolution (DE) framework, which excels in exploring complex hyperparameter landscapes. The efficacy of the model is confirmed utilizing an imbalanced database from HTC, including contributions from numerous participants, totaling over eight thousand hours and several dozen gigabytes of data. Based on established evaluation criteria, our findings indicate that the model achieves notable precision, proving to be a powerful tool for transportation mode classification. Code is publicly available at https://github.com/Zhenhua-Dai/Mode-identification-ImAUC-PSVM/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Shen, X., Jiang, H., Liu, D., Yang, K., Deng, F., Lui, J.C., et al.: PupilRec: leveraging pupil morphology for recommending on smartphones. IEEE Internet Things J. 9(17), 15538–15553 (2022)

    Google Scholar 

  2. Sun, G., Song, L., Yu, H., Chang, V., Du, X., Guizani, M.: V2V routing in a VANET based on the autoregressive integrated moving average model. IEEE Trans. Veh. Technol. 68(1), 908–922 (2018)

    Google Scholar 

  3. Sun, R., Dai, Y., Cheng, Q.: An adaptive weighting strategy for multi sensor integrated navigation in urban areas. IEEE Internet Things J. 10(14), 12777–12786 (2023)

    Google Scholar 

  4. Qu, Z., Liu, X., Zheng, M.: Temporal-spatial quantum graph convolutional neural network based on Schrödinger approach for traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. 24(8), 8677–8686 (2022)

    Google Scholar 

  5. Luo, J., Wang, G., Li, G., Pesce, G.: Transport infrastructure connectivity and conflict resolution: a machine learning analysis. Neural Comput. Appl. 34(9), 6585–6601 (2022)

    Google Scholar 

  6. Long, W., Xiao, Z., Wang, D., Jiang, H., Chen, J., Li, Y., et al.: Unified spatial-temporal neighbor attention network for dynamic traffic prediction. IEEE Trans. Veh. Technol. 72(2), 1515–1529 (2022)

    Google Scholar 

  7. Yang, J., Yang, K., Xiao, Z., Jiang, H., Xu, S., Dustdar, S.: Improving commute experience for private car users via blockchain-enabled multitask learning. IEEE Internet Things J. 10(24), 21656–21669 (2023)

    Google Scholar 

  8. Sun, G., Zhang, Y., Yu, H., Du, X., Guizani, M.: Intersection fog-based distributed routing for V2V communication in urban vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 21(6), 2409–2426 (2019)

    Google Scholar 

  9. Jing, X., Wu, Z., Zhang, L., Li, Z., Mu, D.: Electrical fault diagnosis from text data: a supervised sentence embedding combined with imbalanced classification. IEEE Trans. Ind. Electron. 71(3), 3064–3073 (2023)

    Google Scholar 

  10. Yin, Y., Guo, Y., Su, Q., Wang, Z.: Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning. Drones 6(8), 215 (2022)

    Google Scholar 

  11. R, Li., Peng, B.: Implementing monocular visual-tactile sensors for robust manipulation. Cyborg Bionic Syst. (2022)

  12. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)

    Google Scholar 

  13. Hou, X., Xin, L., Fu, Y., Na, Z., Gao, G., Liu, Y., et al.: A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy 118, 109034 (2023)

    Google Scholar 

  14. Hou, X., Zhang, L., Su, Y., Gao, G., Liu, Y., Na, Z., et al.: A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy 105, 108013 (2023)

    Google Scholar 

  15. Xu, X., Liu, W., Yu, L.: Trajectory prediction for heterogeneous traffic-agents using knowledge correction data-driven model. Inf. Sci. 608, 375–391 (2022)

    Google Scholar 

  16. Xu, J., Guo, K., Zhang, X., Sun, PZ.: Left gaze bias between LHT and RHT: a recommendation strategy to mitigate human errors in left-and right-hand driving. IEEE Trans. Intell. Veh. 8(10), 4406–4417(2023)

  17. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Google Scholar 

  18. Xiao, Z., Shu, J., Jiang, H., Min, G., Liang, J., Iyengar, A.: Toward collaborative occlusion-free perception in connected autonomous vehicles. IEEE Trans. Mob. Comput. (2023)

  19. Pang, S., Zhu, L., Chen, G., Sarrafzadeh, A., Ban, T., Inoue, D.: Dynamic class imbalance learning for incremental LPSVM. Neural Netw. 44, 87–100 (2013)

    Google Scholar 

  20. Laxmi, S., Kumar, S., Gupta, S.: Human activity recognition using fuzzy proximal support vector machine for multicategory classification. Knowl. Inf. Syst. 65, 4585–4611 (2023)

    Google Scholar 

  21. Sun, G., Sheng, L., Luo, L., Yu, H.: Game theoretic approach for multipriority data transmission in 5G vehicular networks. IEEE Trans. Intell. Transp. Syst. 23(12), 24672–24685 (2022)

    Google Scholar 

  22. Crossa, J., Martini, J., Gianola, D., Pérez Rodríguez, P., Jarquin, D., Juliana, P.: Deep kernel and deep learning for genome-based prediction of single traits in multienvironment breeding trials. Front. Genet. 10, 1–13 (2019)

    Google Scholar 

  23. Liu, W.-L., Zhong, J., Liang, P., Guo, J., Zhao, H., Zhang, J.: Towards explainable traffic signal control for urban networks through genetic programming. Swarm Evol. Comput. 88, 101588 (2024)

    Google Scholar 

  24. Roshanzamir, M., Alizadehsani, R., Moravvej, SV., Joloudari, JH., Alinejad-Rokny, H., Gorriz, JM.: Enhancing Interpretability in Machine Learning: A Focus on Genetic Network Programming, Its Variants, and Applications. In: International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 98–107. Springer, (2024)

  25. Price, K.V.: Differential evolution, in Handbook of optimization From classical to modern approach, pp. 187–214. Springer, Berlin (2013)

    Google Scholar 

  26. Taherinavid, S., Moravvej, SV., Chen, Y-L., Yang, J., Ku, CS., Por, LY.: Automatic Transportation Mode Classification Using a Deep Reinforcement Learning Approach With Smartphone Sensors. IEEE Access 12, 514–533 (2023)

  27. Xu, X.: Automatic classification of transportation modes using smartphone sensors: addressing imbalanced data and enhancing training with focal loss and artificial bee colony algorithm. J. Opt. pp 1–15, (2024). https://doi.org/10.1007/s12596-024-01703-6

  28. Kasmaee, A.M.M., Ataei, A., Moravvej, S.V., Alizadehsani, R., Gorriz Saez, J.M., Zhang, Y.: ELRL-MD: A deep learning approach for myocarditis diagnosis using cardiac magnetic resonance images with ensemble and reinforcement learning integration. Physiol. Measurement 45(5), 055011 (2024)

    Google Scholar 

  29. Zhu, X., Hao, J., Guo, Y., Liu, M.: Auc maximization in imbalanced lifelong learning, in Uncertainty in Artificial Intelligence. PMLR, pp. 2574–2585 (2023)

  30. Kim, T., Lee, J.-S.: Maximizing AUC to learn weighted naive Bayes for imbalanced data classification. Expert Syst. Appl. 217, 119564 (2023)

    Google Scholar 

  31. Hao, J., Chen, P., Chen, J., Li, X.: Multi-task federated learning-based system anomaly detection and multi-classification for microservices architecture. Futur. Gener. Comput. Syst. 159, 77–90 (2024)

    Google Scholar 

  32. Mou, J., Gao, K., Duan, P., Li, J., Garg, A., Sharma R.: A machine learning approach for energy-efficient intelligent transportation scheduling problem in a real-world dynamic circumstances. IEEE Trans. Intell. Transp. Syst. 24(12), 15527–15539 (2022)

  33. Zhao J, Song D, Zhu B, Sun Z, Han J, and Sun Y.: A human-like trajectory planning method on a curve based on the driver preview mechanism. IEEE Trans. Intell. Transp. Syst. 24(12), 15527–15539 (2023)

  34. Jiang, Y., Yang, Y., Xu, Y., Wang, E.: Spatial-temporal interval aware individual future trajectory prediction. IEEE Trans. Knowl. Data Eng. 1–14 (2023)

  35. Chandrasiri, G., Kumarasinghe, K., Nandalal, H.: Application of GPS/GIS based travel mode detection method for energy efficient transportation sector. In: ICSBE 2018: Proceedings of the 9th International Conference on Sustainable Built Environment, pp. 11–21. Springer, (2020)

  36. Sun, G., Zhang, Y., Liao, D., Yu, H., Du, X., Guizani, M.: Bus-trajectory-based street-centric routing for message delivery in urban vehicular ad hoc networks. IEEE Trans. Veh. Technol. 67(8), 7550–7563 (2018)

    Google Scholar 

  37. Liu, H., Lee, I.: End-to-end trajectory transportation mode classification using Bi-LSTM recurrent neural network. In: 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 1–5: IEEE (2017)

  38. Li, Z., Wang, Y., Zhang, R., Ding, F., Wei, C., Lu, J-G.: A LiDAR-openstreetmap matching method for vehicle global position initialization based on boundary directional feature extraction. IEEE Trans. Intell. Veh. 1–13 (2024)

  39. Yao, Y., Zhao, B., Zhao, J., Shu, F., Wu, Y., Cheng, X.: Anti-jamming technique for irs aided jrc system in mobile vehicular networks. IEEE Trans. Intell. Trans Syst. 1–11 (2024)

  40. Zheng, W., Lu, S., Yang, Y., Yin, Z., Yin, L.: Lightweight transformer image feature extraction network. PeerJ Comput. Sci. 10, e1755 (2024)

    Google Scholar 

  41. Drosouli, I., Voulodimos, A., Miaoulis, G.: Transportation mode detection using machine learning techniques on mobile phone sensor data. In: Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–8 (2020)

  42. Chen, B., Hu, J., Ghosh, B.K.: Finite-time tracking control of heterogeneous multi-AUV systems with partial measurements and intermittent communication. Sci China Inf. Sci. 67(5), 152202 (2024)

    MathSciNet  Google Scholar 

  43. Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode detection on smartphones. In: Proceedings of the 11th ACM conference on embedded networked sensor systems, 2013, pp. 1–14.

  44. Tang, Q., Qu, S., Zhang, C., Tu, Z., Cao, Y.: Effects of impulse on prescribed-time synchronization of switching complex networks. Neural Netw. 174, 106248 (2024)

    Google Scholar 

  45. Wang, R., Gu, Q., Lu, S., Tian, J., Yin, Z., Yin, L., et al.: FI-NPI: Exploring optimal control in parallel platform systems. Electronics 13(7), 1168 (2024)

    Google Scholar 

  46. Ashqar, H.I., Almannaa, M.H., Elhenawy, M., Rakha, H.A., House, L.: Smartphone transportation mode recognition using a hierarchical machine learning classifier and pooled features from time and frequency domains. IEEE Trans. Intell. Transp. Syst. 20(1), 244–252 (2018)

    Google Scholar 

  47. Hu, J., Wu, Y., Li, T., Ghosh, B.K.: Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Trans. Autom. Control 64(5), 2122–2127 (2018)

    MathSciNet  Google Scholar 

  48. Dabiri, S., Heaslip, K.: Inferring transportation modes from GPS trajectories using a convolutional neural network. Transportation research part C: emerging technologies 86, 360–371 (2018)

    Google Scholar 

  49. Ghosh, B., Chen, B., Hu, J., Zhao, Y.: Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent comunication. IEEE Transactions on Systems Man and Cybernetics: Systems 52(10), 6618–6629 (2022)

    Google Scholar 

  50. Xuemin, Z., Haitao, D., Zenggang, X., Ying, R., Yanchao, L., Yuan, L., et al.: Self-organizing key security management algorithm in socially aware networking. J Signal Process Syst 96, 369–383 (2024)

    Google Scholar 

  51. Majeed, U., Hassan, SS., Hong, CS.: Vanilla split learning for transportation mode detection using diverse smartphone sensors. In: Proceedings of the KIISE Korea Computer Congress, Jeju, Korea, pp. 23–25 (2021)

  52. Zhang, R., Cheng, L., Wang, S., Lou, Y., Gao, Y., Wu, W. et al.: Integrated sensing and communication with massive mimo: A unified tensor approach for channel and target parameter estimation. IEEE Trans. Wirel. Commun. (2024)

  53. Wang, C., Luo, H., Zhao, F., Qin, Y.: Combining residual and LSTM recurrent networks for transportation mode detection using multimodal sensors integrated in smartphones. IEEE 22(9), 5473–5485 (2020)

    Google Scholar 

  54. Zhao, L., Xu, H., Qu, S., Wei, Z., Liu, Y.: Joint Trajectory and Communication Design for UAV-Assisted Symbiotic Radio Networks. IEEE Trans. Veh. Technol. 73(6), 8367–8378 (2024)

    Google Scholar 

  55. Zhou, G., Xu, C., Zhang, H., Zhou, X., Zhao, D., Wu, G., et al.: PMT gain self-adjustment system for high-accuracy echo signal detection. Int. J. Remote Sens. 43(19–24), 7213–7235 (2022)

    Google Scholar 

  56. Liang, X., Wang, G.: A convolutional neural network for transportation mode detection based on smartphone platform. In: 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 338–342 (2017)

  57. Jahangiri, A., Rakha, H.A.: Applying machine learning techniques to transportation mode recognition using mobile phone sensor data. IEEE Trans. Intell. Transp. Syst. 16(5), 2406–2417 (2015)

    Google Scholar 

  58. Wang, L., Gjoreski, H., Ciliberto, M., Mekki, S., Valentin, S., Roggen, D.: Benchmarking the SHL recognition challenge with classical and deep-learning pipelines. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 1626–1635 (2018)

  59. Chen, Y., Li, N., Zhu, D., Zhou, C.C., Hu, Z., Bai, Y., et al.: BEVSOC: Self-supervised contrastive learning for calibration-free bev 3d object detection. IEEE Internet Things J. 11(12), 22167–22182 (2024)

    Google Scholar 

  60. Ito, C., Shuzo, M., Maeda, E.: CNN for human activity recognition on small datasets of acceleration and gyro sensors using transfer learning. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 724–729 (2019)

  61. Rong, Y., Xu, Z., Liu, J., Liu, H., Ding, J., Liu, X., et al.: Du-Bus: A Realtime Bus Waiting Time Estimation System Based On Multi-Source Data. IEEE Trans. Intell. Transp. Syst. 23(12), 24524–24539 (2022)

    Google Scholar 

  62. Friedrich, B., Cauchi, B., Hein, A., Fudickar, S.: Transportation mode classification from smartphone sensors via a long-short-term-memory network. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 709–713, (2019)

  63. Hu, W., Wang, T., Chu, F.: A novel Ramanujan digital twin for motor periodic fault monitoring and detection. IEEE Trans. Ind. Inform. 19(12), 11564–11572 (2023)

    Google Scholar 

  64. Chen, Z., Zhang, L., Jiang, C., Cao, Z., Cui, W.: WiFi CSI based passive human activity recognition using attention based BLSTM. IEEE Trans. Mob. Comput. 18(11), 2714–2724 (2018)

    Google Scholar 

  65. Miaofen, L., Youmin, L., Tianyang, W., Fulei, C., Zhike, P.: Adaptive synchronous demodulation transform with application to analyzing multicomponent signals for machinery fault diagnostics. Mech. Syst. Signal Process. 191, 110208 (2023)

    Google Scholar 

  66. Zhou, L., Sun, X., Zhang, C., Cao, L., Li, Y.: LiDAR-based 3D glass detection and reconstruction in indoor environment. IEEE Trans. Instrum. Meas. 73, 1 (2024)

    Google Scholar 

  67. Luo, G., Shao, C., Cheng, N., Zhou, H., Zhang, H., Yuan, Q., et al.: Edgecooper: Network-aware cooperative lidar perception for enhanced vehicular awareness. IEEE J. Select. Areas Commun. 42(1), 207–222 (2023)

    Google Scholar 

  68. Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., et al.: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdiscip. Rev: Data Min. Knowl. Discov. 13(2), e1484 (2023)

    Google Scholar 

  69. Asif, D., Bibi, M., Arif, M.S., Mukheimer, A.: Enhancing heart disease prediction through ensemble learning techniques with hyperparameter optimization. Algorithms 16(6), 308 (2023)

    Google Scholar 

  70. Sagingalieva, A., Kordzanganeh, M., Kurkin, A., Melnikov, A., Kuhmistrov, D., Perelshtein, M., et al.: Hybrid quantum ResNet for car classification and its hyperparameter optimization. Quantum Machine Intelligence 5(2), 38 (2023)

    Google Scholar 

  71. Ogunsanya, M., Isichei, J., Desai, S.: Grid search hyperparameter tuning in additive manufacturing processes. Manufacturing Letters 35, 1031–1042 (2023)

    Google Scholar 

  72. Sayılar, BC., Ceylan, O.: Grid search based hyperparameter optimization for machine learning based non-intrusive load monitoring. In: 2023 58th International Universities Power Engineering Conference (UPEC), pp. 1–6: IEEE, (2023)

  73. Japa, L., Serqueira, M., Mendonça, I., Aritsugi, M., Bezerra, E., González, P.H.: A population-based hybrid approach for hyperparameter optimization of neural networks. IEEE Access 11, 50752–50768 (2023)

    Google Scholar 

  74. Aghaabbasi, M., Ali, M., Jasiński, M., Leonowicz, Z., Novák, T.: On hyperparameter optimization of machine learning methods using a Bayesian optimization algorithm to predict work travel mode choice. IEEE Access 11, 19762–19774 (2023)

    Google Scholar 

  75. Vakilian, S., Moravvej, SV., Fanian, A.: Using the artificial bee colony (ABC) algorithm in collaboration with the fog nodes in the internet of things three-layer architecture. In: 2021 29th Iranian Conference on Electrical Engineering (ICEE), pp. 509–513: IEEE. (2021)

  76. Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-inspired Comput. 2(2), 78–84 (2010)

    Google Scholar 

  77. Yang, X-S.: A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010), 10, 65–74, (2010)

  78. Yang, X-S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC), pp. 210–214: Ieee. (2009)

  79. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  80. Moravvej, SV., Mousavirad, SJ., Oliva, D., Schaefer, G., Sobhaninia, Z.: An improved de algorithm to optimise the learning process of a bert-based plagiarism detection model. In: 2022 IEEE Congress on Evolutionary Computation (CEC), 2022, pp. 1–7: IEEE.

  81. Zhu, Z., Zhu, X., Guo, Y., Ye, Y., Xue, X.: Inverse matrix-free incremental proximal support vector machine. Decis. Support. Syst. 53(3), 395–405 (2012)

    Google Scholar 

  82. Lo, S.-Y., Oza, P., Patel, V.M.: Adversarially robust one-class novelty detection. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4167–4179 (2022)

    Google Scholar 

  83. Wang, G., Wong, K.W., Lu, J.: AUC-based extreme learning machines for supervised and semi-supervised imbalanced classification. IEEE Trans. Syst, Man, Cybern: Syst. 51(12), 7919–7930 (2020)

    Google Scholar 

  84. Wang, G., Teoh, J.Y.-C., Lu, J., Choi, K.-S.: Least squares support vector machines with fast leave-one-out AUC optimization on imbalanced prostate cancer data. Int. J. Mach. Learn. Cybern. 11(8), 1909–1922 (2020)

    Google Scholar 

  85. Zhao, P., Hoi, SC., Jin, R., Yang, T.: Online AUC maximization. (2011)

  86. Han, J., Gondro, C., Reid, K., Steibel, J.P.: Heuristic hyperparameter optimization of deep learning models for genomic prediction. G3 11(7), jkab032 (2021)

    Google Scholar 

  87. Gharagozlou, H., Mohammadzadeh, J., Bastanfard, A., Ghidary, S.S.: Semantic relation extraction: A review of approaches, datasets, and evaluation methods with looking at the methods and datasets in the persian language. ACM Trans. Asian Low-Resour. Language Inf. Process. 22(7), 1–29 (2023)

    Google Scholar 

  88. Li, D.: GLHAD: A group lasso-based hybrid attack detection and localization framework for multistage manufacturing systems. J. Comput. Inf. Sci. Eng. 24, 051002–051011 (2024)

    Google Scholar 

  89. Saeid, P., Pazoki, M., Zeinolabedini, M.: Optimization of biomass production from sugar bagasse in anaerobic digestion using genetic algorithm. Modeling Earth Syst. Environ. 9(2), 2183–2198 (2023)

    Google Scholar 

  90. Saeid, P., Zeinolabedini, M., Khamforoush, M.: Simulation of a crossflow ultrafiltration polysulfone/polyvinylpyrrolidone membrane separation using finite element analysis to separate oil/water emulsion. Iran. Polym. J. 32(4), 447–455 (2023)

    Google Scholar 

  91. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)

    Google Scholar 

  92. Yu, M-C., Yu, T., Wang, S-C., Lin, C-J., Chang EY.: Big data small footprint: The design of a low-power classifier for detecting transportation modes.In: Proceedings of the VLDB Endowment, vol. 7(13), pp. 1429-1440, (2014)

  93. Nham, B., Siangliulue, K., Yeung, S.: Predicting mode of transport from iphone accelerometer data. Stanford University, Machine Learning Final Projects (2008)

    Google Scholar 

  94. Liu, C.-H., Hsieh, S.: A fall detection system using accelerometer and gyroscope. Tatung University, Master esis (2011)

    Google Scholar 

  95. Danaei, S., Bostani, A., Moravvej, SV., Mohammadi, F., Alizadehsani, R., Shoeibi A et al.: Myocarditis diagnosis: a method using mutual learning-based abc and reinforcement learning. In: 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo), pp. 000265–000270: IEEE (2022)

  96. Moravvej, SV., Mousavirad, SJ., Oliva, D., Mohammadi, F.: A novel plagiarism detection approach combining bert-based word embedding, attention-based lstms and an improved differential evolution algorithm. arXiv preprint arXiv:2305.02374, (2023)

  97. Gharagozlou, H., Mohammadzadeh, J., Bastanfard, A., Ghidary, S.S.: RLAS-BIABC: A reinforcement learning-based answer selection using the bert model boosted by an improved ABC algorithm. Comput. Intell. Neurosci. 2022, 1–22 (2022)

    Google Scholar 

  98. Moravvej, S.V., Alizadehsani, R., Khanam, S., Sobhaninia, Z., Shoeibi, A., Khozeimeh, F., et al.: RLMD-PA: a reinforcement learning-based myocarditis diagnosis combined with a population-based algorithm for pretraining weights. Contrast Media Mol. Imaging 2022(1), 8733632 (2022)

    Google Scholar 

  99. Moravvej, SV., Mousavirad, SJ., Moghadam, MH., Saadatmand, M.: An LSTM-based plagiarism detection via attention mechanism and a population-based approach for pre-training parameters with imbalanced classes. In: Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Proceedings, Part III 28, 2021, pp. 690–701: Springer, (2021)

  100. Soares, E.F.D.S., Campos, C.A.V., de Lucena, S.C.: Online travel mode detection method using automated machine learning and feature engineering. Future Gener. Comput. Syst. 101, 1201–1212 (2019)

    Google Scholar 

  101. Soares, E.F.D.S., Revoredo, K., Baião, F.: de MS Quintella CA, Campos CAV, “A combined solution for real-time travel mode detection and trip purpose prediction,.” IEEE Trans. Intell. Transp. Syst. 20(12), 4655–4664 (2019)

    Google Scholar 

  102. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn 2.0: Hands-free automl via meta-learning. J. Mach. Learn. Res. 23(261), 1–61 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to take this opportunity to acknowledge that there are no individuals or organizations that require acknowledgment for their contributions to this work.

Funding

This work was supported by the Key Scientific Research Foundation of Hunan Provincial Department of Education (No. 23A0575); in part by the Hunan Provincial Natural Science Foundation (Nos. 2024JJ7184, 2024JJ7187); in part by the the Project of Hunan Provincial Social Science Achievement Review Committee in 2023 (No.XSP2023JYC283); in part by the Science Communication Research and Practice Project of Hunan Association for Science and Technology in 2023 (No.2023jckpkt096) and in part by the General Research Projects of Hunan Provincial Department of Education(No.23C0358).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data collection. simulation and analysis were performed by " Zhenhua Dai. and Tangsen Huang ". The first draft of the manuscript was written by " Zhenhua Dai ".

Corresponding author

Correspondence to Zhenhua Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The research paper has received ethical approval from the institutional review board, ensuring the protection of participants’ rights and compliance with the relevant ethical guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Huang, T. Smartphone detector examination for transportation mode identification utilizing imbalanced maximizing-area under the curve proximal support vector machine. SIViP 18, 8361–8377 (2024). https://doi.org/10.1007/s11760-024-03479-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-024-03479-5

Keywords