Skip to main content
Log in

Time-cyclic frequency representation of propeller tonals applied to recordings in the sea of Marmara

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Noise produced by the cavitation of the propellers is the main underwater acoustic signature used to detect and classify ships. Propeller noise exhibits cyclostationarity and creates acoustic traces called tonals which depend on the characteristic of the propellers and can be detected by using Integrated Cyclic Modulation Coherence (ICMC) method. ICMC is based on the Cylic Modulation Coherence (CMC) which is basically the Fourier transform of the spectrogram normalized over the spectral frequency. This transform eliminates the temporal information due to duality between time and cyclic frequency which prevents the analysis of propeller tonals over time. We propose a visual tool named ICMC-\(\hbox {gram}^1\) The suffix ’gram’ is used similarly to ’spectrogram’ or ’seismogram’, indicating a graphical representation of data over time or frequency -which allows to examine the changes in cyclic frequencies over time- and present ICMC-gram results of real data collected from the Sea of Marmara during Summer 2023.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Yüzgeç, E.T., Girgin, M., Firat, U., Altiok, H., Akgül, T.: Gemi pervane tonellerinin sezimi detection of ship propeller tonals. In: 2024 32nd Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2024)

  2. Tasker, M., Amundin, M., Andre, M., Hawkins, A., Lang, W., Merck, T., Scholik-Schlomer, A., Teilmann, J., Thomsen, F., Werner, S.: Marine strategy framework directive task group 11 report: underwater noise and other forms of energy. Technical report, JRC Scientific and Technical Reports (2010)

  3. Weilgart, L.S.: The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can. J. Zool. 85(11), 1091–1116 (2007)

    Article  MATH  Google Scholar 

  4. Slabbekoorn, H., Dooling, R.J., Popper, A.N., Fay, R.R. (eds.): Effects of Anthropogenic Noise on Animals. Springer, Berlin/Heidelberg, Germany (2018)

    MATH  Google Scholar 

  5. Hildebrand, J.A.: Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009)

    Article  MATH  Google Scholar 

  6. Urick, R.J.: Sound Propagation in the Sea. Peninsula, Los Altos, CA (1990)

    Google Scholar 

  7. Harland, E.J., Jones, S.A.S., Clarke, T.: SEA 6 Technical report: underwater ambient noise. QINETIQ/S &E/MAC/CR050575 (2005)

  8. Urick, R.J.: Principles of Underwater Sound, 3rd edn. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  9. Firat, U., Akgül, T.: Compressive sensing for detecting ships with second-order cyclostationary signatures. IEEE J. Oceanic Eng. 43(4), 1086–1098 (2018)

    Article  MATH  Google Scholar 

  10. Ross, D.: Mechanics of Underwater Noise. Elsevier Science, Burlington (2013)

    MATH  Google Scholar 

  11. Firat, U., Akgül, T.: Gemi akustik Iz analizi. EMO Bilimsel Dergi 7(13), 25–31 (2017)

    Google Scholar 

  12. Nielsen, R.O.: Cramer-rao lower bounds for sonar broad-band modulation parameters. IEEE J. Oceanic Eng. 24(3), 285–290 (1999)

    Article  MATH  Google Scholar 

  13. d’Assumpcao, H.A.: Theoretical Assessment of Demon Performance. Technical report, DTIC Document (1970)

    MATH  Google Scholar 

  14. Kummert, A.: Fuzzy technology implemented in sonar systems. IEEE J. Oceanic Eng. 18(4), 483–490 (1993)

    Article  MATH  Google Scholar 

  15. Kirsteins, I.P., Clark, P.U., Atlas, L.: Maximum-likelihood estimation of propeller noise modulation characteristics. In: Proc. 4th International Conference of Exhibition Underwater Acoustic Meas., Technol. Results, pp. 355–362 (2011)

  16. Pollara, A., Sutin, A., Salloum, H.: Passive acoustic methods of small boat detection, tracking and classification. In: 2017 IEEE International Symposium on Technologies for Homeland Security (HST), pp. 1–6 (2017)

  17. Lowes, G.J., Neasham, J.A., Burnett, R., Tsimenidis, C.C.: Low energy, passive acoustic sensing for wireless underwater monitoring networks. In: OCEANS 2019 MTS/IEEE SEATTLE, pp. 1–9 (2019)

  18. Railey, K., DiBiaso, D., Schmidt, H.: An acoustic remote sensing method for high-precision propeller rotation and speed estimation of unmanned underwater vehicles. J. Acoust. Soc. Am. 148(6), 3942–3950 (2020)

    Article  MATH  Google Scholar 

  19. Pollara, A., Sutin, A., Salloum, H.: Improvement of the detection of envelope modulation on noise (demon) and its application to small boats. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–10 (2016)

  20. Antoni, J., Hanson, D.: Detection of surface ships from interception of cyclostationary signature with the cyclic modulation coherence. IEEE J. Oceanic Eng. 37(3), 478–493 (2012)

    Article  MATH  Google Scholar 

  21. Zhou, X., Yang, K., Huang, C., Zhu, Y., Zhang, Y.: Propeller shaft frequency extraction based on the improved cyclic modulation spectrum. In: OCEANS 2019 - Marseille, pp. 1–5 (2019)

  22. Gao, Y., Cain, T., Cooper, P.: Automatic detection of underwater propeller signals using cyclostationarity analysis. Mech. Syst. Signal Process. 146, 107032 (2021)

    Article  MATH  Google Scholar 

  23. Zhu, C., Gaggero, T., Makris, N.C., Ratilal, P.: Underwater sound characteristics of a ship with controllable pitch propeller. J. Mar. Sci. Eng. 10(3), 328 (2022)

    Article  Google Scholar 

  24. Zhu, C., Seri, S.G., Mohebbi-Kalkhoran, H., Ratilal, P.: Long-range automatic detection, acoustic signature characterization and bearing-time estimation of multiple ships with coherent hydrophone array. Remote Sens. 12(22), 3731 (2020)

  25. Tong, W., Wu, K., Wang, H., Cao, L., Huang, B., Wu, D., Antoni, J.: Adaptive weighted envelope spectrum: a robust spectral quantity for passive acoustic detection of underwater propeller based on spectral coherence. Mech. Syst. Signal Process. 212, 111265 (2024)

    Article  MATH  Google Scholar 

  26. Ollivier, B., Shute, P., Kinda, G.B.: Underwater soundscape description from cyclostationarity point of view. J. Acoust. Soc. Am. 150(3), 2245–2255 (2021)

    Article  MATH  Google Scholar 

  27. Gardner, W., Franks, L.: Characterization of cyclostationary random signal processes. IEEE Trans. Inf. Theory 21(1), 4–14 (1975)

    Article  MATH  Google Scholar 

  28. Öztürk, B., Öztürk, A.A.: On the biology of the turkish straits system. Bulletin de l’Institut Oceanographique, Monaco No.2(Special 17), 205–221 (1996)

  29. Dede, A., Öztürk, A.A., Akamatsu, T., Tonay, A.M., Öztürk, B.: Long-term passive acoustic monitoring revealed seasonal and diel patterns of cetacean presence in the Istanbul strait. J. Mar. Biol. Assoc. U.K. 94(6), 1195–1202 (2014)

    Article  MATH  Google Scholar 

  30. Firat, U., Akgül, T.: Spectral estimation of cavitation related narrow-band ship radiated noise based on fractional lower order statistics and multiple signal classification. In: 2013 OCEANS - San Diego, pp. 1–6 (2013)

  31. Ülüg, U., Akgül, T., Gezer, C.: Ambient noise measurements in the strait of istanbul. In: Proceedings of the Institute of Acoustics, Conference on Underwater Noise Measurement, Impact and Mitigation vol. 30, pp. 35–42 (2008)

  32. Isabekov, A., Akgül, T., Baykut, S.: Underwater ambient noise analysis using wavelet transform based and empirical mode decomposition methods. In: European Conference on Noise Control, EURONOISE-2009, Edinburgh, Scotland (2009)

  33. Wenz, G.M.: Acoustic ambient noise in the ocean: spectra and sources. J. Acoust. Soc. Am. 34(12), 1936–1956 (1962)

    Article  MATH  Google Scholar 

  34. Dekeling, R.P.A., Tasker, M.L., Van der Graaf, A.J., Ainslie, M.A., Andersson, M.H., André, M., Borsani, J.F., Brensing, K., Castellote, M., Cronin, D., Dalen, J., Folegot, T., Leaper, R., Pajala, J., Redman, P., Robinson, S.P., Sigray, P., Sutton, G., Thomsen, F., Werner, S., Wittekind, D., Young, J.V.: Monitoring Guidance for Underwater Noise in European Seas, Part I: Executive Summary. JRC Scientific and Policy Report EUR 26557 EN, Publications Office of the European Union, Luxembourg (2014). https://doi.org/10.2788/29293

Download references

Acknowledgements

This work was partially supported by the TUBITAK 1001 - Scientific and Technological Research Projects Support Program within the scope of research project number 120Y190. We would like to thank project researcher Tülay Çokacar for her contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eren Taha Yüzgeç.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an extended version of our paper published in the SIU 2024 - 32nd IEEE Conference on Signal Processing and Communications Applications [1].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüzgeç, E.T., Fırat, U., Girgin, M. et al. Time-cyclic frequency representation of propeller tonals applied to recordings in the sea of Marmara. SIViP 19, 74 (2025). https://doi.org/10.1007/s11760-024-03575-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03575-6

Keywords

Navigation