Skip to main content

Advertisement

Log in

Improving camera parameter estimation using an adaptive genetic algorithm

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an adaptive genetic algorithm designed to address the camera calibration problem. This approach facilitates the resolution of a complex optimization challenge. Our objective is to refine the camera calibration results estimated by the analytical method. For this purpose, a study was conducted on the type and probability of crossover, the probability of mutation and on the adaptation of the initialization intervals. This adaptation consists of adjusting the length of the initialization intervals. The main objective is to find an optimal solution for the camera calibration parameters by minimizing the cost function. This function is reformulated from the relationship between the points of the 3D target and their 2D projection in the image. Experimental tests and evaluations were conducted to validate the proposed approach. The results indicate that our algorithm is robust and can achieve very satisfactory calibration results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Merras, M., Saaidi, A., El Akkad, N., Satori, K.: Multi-view 3D reconstruction and modeling of the unknown 3D scenes using genetic algorithms. Soft Comput. 22(19), 6271–6289 (2018). https://doi.org/10.1007/s00500-017-2966-z

    Article  MATH  Google Scholar 

  2. Guerchouche, R. et al: Camera calibration methods evaluation procedure for images rectification and 3D reconstruction

  3. Park, B.-S., Kim, W., Kim, J.-K., Kim, D.-W., Seo, Y.-H.: Iterative extrinsic calibration using virtual viewpoint for 3D reconstruction. Signal Process. 197, 108535 (2022). https://doi.org/10.1016/j.sigpro.2022.108535

    Article  MATH  Google Scholar 

  4. El Hazzat, S., Merras, M.: Improvement of 3D reconstruction based on a new 3D point cloud filtering algorithm. Signal Image Video Process. 17(5), 2573–2582 (2023). https://doi.org/10.1007/s11760-022-02474-y

    Article  MATH  Google Scholar 

  5. Li, S., Yoon, H.-S.: Vehicle Localization in 3D World Coordinates Using Single Camera at Traffic Intersection. Sensors 23(7), 3661 (2023). https://doi.org/10.3390/s23073661

    Article  MATH  Google Scholar 

  6. Van, X.H., Do, N.: An efficient regression method for 3D object localization in machine vision systems. IAES Int. J. Robot. Autom. (IJRA) 11(2), 111 (2022). https://doi.org/10.11591/ijra.v11i2.pp111-121

    Article  MATH  Google Scholar 

  7. Khrouch, H., Hsaini, A. M., Bouazi, A., Chana, I.: Experimental camera calibration study for 3D localization. In: 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1–4 (2022). https://doi.org/10.1109/IRASET52964.2022.9738066

  8. Khrouch, H., Mahdaoui, A., Tantaoui, M., Chana, I., Bouazi, A.: Camera Calibration Based on Elitist Genetic Algorithm. In: 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1–7 (2024). https://doi.org/10.1109/IRASET60544.2024.10549372

  9. Zhang, Y.-J.: Camera calibration. In: Zhang, Y.-J. (ed.) 3-D Computer Vision: Principles, Algorithms and Applications, pp. 37–65. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-19-7580-6_2

    Chapter  MATH  Google Scholar 

  10. Merras, M., El Akkad, N., Saaidi, A., Nazih, A.G., Satori, K.: Camera Self calibration with varying parameters by an unknown three dimensional scene using the improved genetic algorithm. 3D Res. (2015). https://doi.org/10.1007/s13319-015-0039-6

    Article  MATH  Google Scholar 

  11. Zhang, Z.: A flexible new technique for camera calibration

  12. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol.1, pp. 666–673 (1999). https://doi.org/10.1109/ICCV.1999.791289

  13. Heikkila, J. and Silvén, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1106–1112 (1997). https://doi.org/10.1109/CVPR.1997.609468

  14. Lopez, M., Mari, R., Gargallo, P., Kuang, Y., Gonzalez-Jimenez, J. and Haro, G.: Deep single image camera calibration with radial distortion. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 11809–11817 (2019). https://doi.org/10.1109/CVPR.2019.01209

  15. Liao, K. et al.: Deep learning for camera calibration and beyond: a survey. (2023). arXiv: arXiv:2303.10559. https://doi.org/10.48550/arXiv.2303.10559.

  16. Bogdan, O., Eckstein, V., Rameau, F. and Bazin, J.C.: DeepCalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras. In: Proceedings of the 15th ACM SIGGRAPH European Conference on Visual Media Production, in CVMP ’18, pp. 1–10. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3278471.3278479

  17. Hold-Geoffroy, Y. et al.: A perceptual measure for deep single image camera calibration. arXiv: arXiv:1712.01259. https://doi.org/10.48550/arXiv.1712.01259

  18. Liao, K., Lin, C., Zhao, Y., Mai, X.: Model-free distortion rectification framework bridged by distortion distribution map. IEEE Trans. Image Process. 29, 3707–3718 (2020). https://doi.org/10.1109/TIP.2020.2964523

    Article  MATH  Google Scholar 

  19. Liao, K., Lin, C., Zhao, Y., Gabbouj, Mf.: DR-GAN: automatic radial distortion rectification using conditional GAN in real-time. IEEE Trans. Circuits Syst. Video Technol. 30(3), 725–733 (2020). https://doi.org/10.1109/TCSVT.2019.2897984

    Article  Google Scholar 

  20. Zhao, K., Liao, K., Lin, C., Liu, M., Zhao, Y.: Joint distortion rectification and super-resolution for self-driving scene perception. Neurocomputing 435, 176–185 (2021). https://doi.org/10.1016/j.neucom.2020.12.115

    Article  MATH  Google Scholar 

  21. Kamil, K., Chong, K.H., Hashim, H., Shaaya, S.A.: A multiple mitosis genetic algorithm. IAES Int. J. Artif. Intell. (IJ-AI) 8(3), 252 (2019). https://doi.org/10.11591/ijai.v8.i3.pp252-258

    Article  MATH  Google Scholar 

  22. Mohammed, I.S., Hussien, M.K.: Off-line handwritten signature recognition based on genetic algorithm and Euclidean distance. IAES Int. J. Artif. Intell. (IJ-AI) 12(3), 1238 (2023). https://doi.org/10.11591/ijai.v12.i3.pp1238-1249

    Article  MATH  Google Scholar 

  23. Merras, M., El Hazzat, S., Saaidi, A., Satori, K., Nazih, A.G.: 3D face reconstruction using images from cameras with varying parameters. Int. J. Autom. Comput. 14(6), 661–671 (2017). https://doi.org/10.1007/s11633-016-0999-x

    Article  MATH  Google Scholar 

  24. Bouchouicha, M., Khelifa, M.B. and Puech, W.: A non-linear camera calibration with genetic algorithms. In: Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceeding, vol. 2, pp. 189–192 (2003). https://doi.org/10.1109/ISSPA.2003.1224847

  25. Xing, Y., Liu, Q., Sun, J. and Hu, L.: Camera calibration based on improved genetic algorithm. In: 2007 IEEE International Conference on Automation and Logistics, pp. 2596–2601 (2007). https://doi.org/10.1109/ICAL.2007.4339018

  26. Merras, M., El Akkad, N., Saaidi, A., Nazih, A.G., Satori, K.: Camera calibration with varying parameters based on improved genetic algorithm. WSEAS Trans. Comput. 13(129–137), 2014 (2014)

    MATH  Google Scholar 

  27. Zhang, G., Zhao, H., Zhang, G., Chen, Y.: Improved genetic algorithm for intrinsic parameters estimation of on-orbit space cameras. Opt. Commun. 475, 126235 (2020). https://doi.org/10.1016/j.optcom.2020.126235

    Article  MATH  Google Scholar 

  28. Hui, N.B., Pratihar, D.K.: Camera calibration using a genetic algorithm. Eng. Optim. 40(12), 1151–1169 (2008). https://doi.org/10.1080/03052150802344477

    Article  MATH  Google Scholar 

  29. Nixon, M.S., Aguado, A.S.: Camera geometry fundamentals. In: Feature Extraction and Image Processing for Computer Vision, pp. 483–510. Elsevier, The Netherlands (2020). https://doi.org/10.1016/B978-0-12-814976-8.00010-5

    Chapter  MATH  Google Scholar 

  30. Bouazi, A., Marhraoui Hsaini, A.: Construction of a non-linear distortion model and application to 3-D localization. Int. J. Comput. Trends Technol. 43(2), 113–117 (2017). https://doi.org/10.14445/22312803/IJCTT-V43P116

    Article  Google Scholar 

  31. Ran, S., Ye, L., Wang, J.L., Zhang, Q.: A novel camera calibration method based on simulated annealing genetic algorithm. Appl. Mech. Mater. 719–720, 1184–1190 (2015). https://doi.org/10.4028/www.scientific.net/AMM.719-720.1184

    Article  MATH  Google Scholar 

  32. Xiangzhou, W., Dongqing, C., Shuhua, Z., Yajun, Q.: Line array camera calibration method based on improved genetic optimization algorithm. J. Beijing Inst. Technol. 40(8), 861–866 (2020). https://doi.org/10.15918/j.tbit1001-0645.2019.239

    Article  MATH  Google Scholar 

  33. Yao, H. and Zhang, Z.: Research of camera calibration based on genetic algorithm BP neural network. In: 2016 IEEE International Conference on Information and Automation (ICIA), pp. 350–355 (2016). https://doi.org/10.1109/ICInfA.2016.7831849

  34. Pitchandi, N., Subramanian, S.P.: GA‐based camera calibration for vision‐assisted robotic assembly system. IET Comput. Vis. 11(1), 50–59 (2017). https://doi.org/10.1049/iet-cvi.2016.0004

    Article  MATH  Google Scholar 

  35. Yang, Z.J., Chen, F., Zhao, J. and Zhao, H.W.: A novel camera calibration method based on genetic algorithm. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 2222–2227 (2008). https://doi.org/10.1109/ICIEA.2008.4582912

  36. Lim, S.M., Abu Bakar, Md., Sultan, Md., Sulaiman, N., Aida Mustapha, K.Y.: Crossover and mutation operators of genetic algorithms. International Journal of Machine Learning and Computing 7(1), 9–12 (2017). https://doi.org/10.18178/ijmlc.2017.7.1.611

    Article  Google Scholar 

  37. Ma, X., Li, B., Zhang, Y., Yan, M.: The canny edge detection and its improvement. In: Jingsheng Lei, F., Wang, L., Deng, H., Miao, D. (eds.) Artificial Intelligence and Computational Intelligence, pp. 50–58. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33478-8_7

    Chapter  MATH  Google Scholar 

  38. Vallée, T., Yildizoğlu, M.: Présentation des algorithmes génétiques et de leurs applications en économie. Revue d’économie politique 114(6), 711–745 (2004)

    MATH  Google Scholar 

  39. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, pp. 69–93. Elsevier, The Netherlands (1991). https://doi.org/10.1016/B978-0-08-050684-5.50008-2

    Chapter  MATH  Google Scholar 

  40. Riccardo Poli, W.B.: Genetic programming with one-point crossover. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 180–189. Springer London, London (1998). https://doi.org/10.1007/978-1-4471-0427-8_20

    Chapter  MATH  Google Scholar 

  41. Soon, G.K., Guan, T.T., On, C.K., Alfred, R. and Anthony, P.: A comparison on the performance of crossover techniques in video game. In: 2013 IEEE International Conference on Control System, Computing and Engineering, pp. 493–498 (2013). https://doi.org/10.1109/ICCSCE.2013.6720015

  42. Cazacu, R.: Comparative study between the improved implementation of 3 classic mutation operators for genetic algorithms. Proc. Eng. 181, 634–640 (2017). https://doi.org/10.1016/j.proeng.2017.02.444

    Article  MATH  Google Scholar 

  43. Rani, S., Suri, B., Goyal, R.: On the effectiveness of using elitist genetic algorithm in mutation testing. Symmetry 11(9), 1145 (2019). https://doi.org/10.3390/sym11091145

    Article  MATH  Google Scholar 

Download references

Funding

The authors declare that no funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

H.K., A.M.H., I.C., and A.B. conceptualized the study. H.K., A.M., and A.M.H. developed the methodology. H.K., A.M., A.M.H., and M.M. prepared the original draft. I.C. and A.B. supervised the project. H.K., A.M., and M.M. conducted the formal analysis. All authors, including H.K., A.M., A.M.H., M.M., I.C., and A.B., contributed to reviewing and editing the manuscript.

Corresponding author

Correspondence to Hafsa Khrouch.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and consent to participate

The authors affirm that the manuscript represents their original work. The ideas, perspectives, innovations, and findings presented in the manuscript are entirely their own. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrouch, H., Mahdaoui, A., Marhraoui Hsaini, A. et al. Improving camera parameter estimation using an adaptive genetic algorithm. SIViP 19, 113 (2025). https://doi.org/10.1007/s11760-024-03604-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03604-4

Keywords

Navigation