Abstract
In this paper, we propose an adaptive genetic algorithm designed to address the camera calibration problem. This approach facilitates the resolution of a complex optimization challenge. Our objective is to refine the camera calibration results estimated by the analytical method. For this purpose, a study was conducted on the type and probability of crossover, the probability of mutation and on the adaptation of the initialization intervals. This adaptation consists of adjusting the length of the initialization intervals. The main objective is to find an optimal solution for the camera calibration parameters by minimizing the cost function. This function is reformulated from the relationship between the points of the 3D target and their 2D projection in the image. Experimental tests and evaluations were conducted to validate the proposed approach. The results indicate that our algorithm is robust and can achieve very satisfactory calibration results.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03604-4/MediaObjects/11760_2024_3604_Fig10_HTML.png)
Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Merras, M., Saaidi, A., El Akkad, N., Satori, K.: Multi-view 3D reconstruction and modeling of the unknown 3D scenes using genetic algorithms. Soft Comput. 22(19), 6271–6289 (2018). https://doi.org/10.1007/s00500-017-2966-z
Guerchouche, R. et al: Camera calibration methods evaluation procedure for images rectification and 3D reconstruction
Park, B.-S., Kim, W., Kim, J.-K., Kim, D.-W., Seo, Y.-H.: Iterative extrinsic calibration using virtual viewpoint for 3D reconstruction. Signal Process. 197, 108535 (2022). https://doi.org/10.1016/j.sigpro.2022.108535
El Hazzat, S., Merras, M.: Improvement of 3D reconstruction based on a new 3D point cloud filtering algorithm. Signal Image Video Process. 17(5), 2573–2582 (2023). https://doi.org/10.1007/s11760-022-02474-y
Li, S., Yoon, H.-S.: Vehicle Localization in 3D World Coordinates Using Single Camera at Traffic Intersection. Sensors 23(7), 3661 (2023). https://doi.org/10.3390/s23073661
Van, X.H., Do, N.: An efficient regression method for 3D object localization in machine vision systems. IAES Int. J. Robot. Autom. (IJRA) 11(2), 111 (2022). https://doi.org/10.11591/ijra.v11i2.pp111-121
Khrouch, H., Hsaini, A. M., Bouazi, A., Chana, I.: Experimental camera calibration study for 3D localization. In: 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1–4 (2022). https://doi.org/10.1109/IRASET52964.2022.9738066
Khrouch, H., Mahdaoui, A., Tantaoui, M., Chana, I., Bouazi, A.: Camera Calibration Based on Elitist Genetic Algorithm. In: 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1–7 (2024). https://doi.org/10.1109/IRASET60544.2024.10549372
Zhang, Y.-J.: Camera calibration. In: Zhang, Y.-J. (ed.) 3-D Computer Vision: Principles, Algorithms and Applications, pp. 37–65. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-19-7580-6_2
Merras, M., El Akkad, N., Saaidi, A., Nazih, A.G., Satori, K.: Camera Self calibration with varying parameters by an unknown three dimensional scene using the improved genetic algorithm. 3D Res. (2015). https://doi.org/10.1007/s13319-015-0039-6
Zhang, Z.: A flexible new technique for camera calibration
Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol.1, pp. 666–673 (1999). https://doi.org/10.1109/ICCV.1999.791289
Heikkila, J. and Silvén, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1106–1112 (1997). https://doi.org/10.1109/CVPR.1997.609468
Lopez, M., Mari, R., Gargallo, P., Kuang, Y., Gonzalez-Jimenez, J. and Haro, G.: Deep single image camera calibration with radial distortion. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 11809–11817 (2019). https://doi.org/10.1109/CVPR.2019.01209
Liao, K. et al.: Deep learning for camera calibration and beyond: a survey. (2023). arXiv: arXiv:2303.10559. https://doi.org/10.48550/arXiv.2303.10559.
Bogdan, O., Eckstein, V., Rameau, F. and Bazin, J.C.: DeepCalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras. In: Proceedings of the 15th ACM SIGGRAPH European Conference on Visual Media Production, in CVMP ’18, pp. 1–10. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3278471.3278479
Hold-Geoffroy, Y. et al.: A perceptual measure for deep single image camera calibration. arXiv: arXiv:1712.01259. https://doi.org/10.48550/arXiv.1712.01259
Liao, K., Lin, C., Zhao, Y., Mai, X.: Model-free distortion rectification framework bridged by distortion distribution map. IEEE Trans. Image Process. 29, 3707–3718 (2020). https://doi.org/10.1109/TIP.2020.2964523
Liao, K., Lin, C., Zhao, Y., Gabbouj, Mf.: DR-GAN: automatic radial distortion rectification using conditional GAN in real-time. IEEE Trans. Circuits Syst. Video Technol. 30(3), 725–733 (2020). https://doi.org/10.1109/TCSVT.2019.2897984
Zhao, K., Liao, K., Lin, C., Liu, M., Zhao, Y.: Joint distortion rectification and super-resolution for self-driving scene perception. Neurocomputing 435, 176–185 (2021). https://doi.org/10.1016/j.neucom.2020.12.115
Kamil, K., Chong, K.H., Hashim, H., Shaaya, S.A.: A multiple mitosis genetic algorithm. IAES Int. J. Artif. Intell. (IJ-AI) 8(3), 252 (2019). https://doi.org/10.11591/ijai.v8.i3.pp252-258
Mohammed, I.S., Hussien, M.K.: Off-line handwritten signature recognition based on genetic algorithm and Euclidean distance. IAES Int. J. Artif. Intell. (IJ-AI) 12(3), 1238 (2023). https://doi.org/10.11591/ijai.v12.i3.pp1238-1249
Merras, M., El Hazzat, S., Saaidi, A., Satori, K., Nazih, A.G.: 3D face reconstruction using images from cameras with varying parameters. Int. J. Autom. Comput. 14(6), 661–671 (2017). https://doi.org/10.1007/s11633-016-0999-x
Bouchouicha, M., Khelifa, M.B. and Puech, W.: A non-linear camera calibration with genetic algorithms. In: Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceeding, vol. 2, pp. 189–192 (2003). https://doi.org/10.1109/ISSPA.2003.1224847
Xing, Y., Liu, Q., Sun, J. and Hu, L.: Camera calibration based on improved genetic algorithm. In: 2007 IEEE International Conference on Automation and Logistics, pp. 2596–2601 (2007). https://doi.org/10.1109/ICAL.2007.4339018
Merras, M., El Akkad, N., Saaidi, A., Nazih, A.G., Satori, K.: Camera calibration with varying parameters based on improved genetic algorithm. WSEAS Trans. Comput. 13(129–137), 2014 (2014)
Zhang, G., Zhao, H., Zhang, G., Chen, Y.: Improved genetic algorithm for intrinsic parameters estimation of on-orbit space cameras. Opt. Commun. 475, 126235 (2020). https://doi.org/10.1016/j.optcom.2020.126235
Hui, N.B., Pratihar, D.K.: Camera calibration using a genetic algorithm. Eng. Optim. 40(12), 1151–1169 (2008). https://doi.org/10.1080/03052150802344477
Nixon, M.S., Aguado, A.S.: Camera geometry fundamentals. In: Feature Extraction and Image Processing for Computer Vision, pp. 483–510. Elsevier, The Netherlands (2020). https://doi.org/10.1016/B978-0-12-814976-8.00010-5
Bouazi, A., Marhraoui Hsaini, A.: Construction of a non-linear distortion model and application to 3-D localization. Int. J. Comput. Trends Technol. 43(2), 113–117 (2017). https://doi.org/10.14445/22312803/IJCTT-V43P116
Ran, S., Ye, L., Wang, J.L., Zhang, Q.: A novel camera calibration method based on simulated annealing genetic algorithm. Appl. Mech. Mater. 719–720, 1184–1190 (2015). https://doi.org/10.4028/www.scientific.net/AMM.719-720.1184
Xiangzhou, W., Dongqing, C., Shuhua, Z., Yajun, Q.: Line array camera calibration method based on improved genetic optimization algorithm. J. Beijing Inst. Technol. 40(8), 861–866 (2020). https://doi.org/10.15918/j.tbit1001-0645.2019.239
Yao, H. and Zhang, Z.: Research of camera calibration based on genetic algorithm BP neural network. In: 2016 IEEE International Conference on Information and Automation (ICIA), pp. 350–355 (2016). https://doi.org/10.1109/ICInfA.2016.7831849
Pitchandi, N., Subramanian, S.P.: GA‐based camera calibration for vision‐assisted robotic assembly system. IET Comput. Vis. 11(1), 50–59 (2017). https://doi.org/10.1049/iet-cvi.2016.0004
Yang, Z.J., Chen, F., Zhao, J. and Zhao, H.W.: A novel camera calibration method based on genetic algorithm. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 2222–2227 (2008). https://doi.org/10.1109/ICIEA.2008.4582912
Lim, S.M., Abu Bakar, Md., Sultan, Md., Sulaiman, N., Aida Mustapha, K.Y.: Crossover and mutation operators of genetic algorithms. International Journal of Machine Learning and Computing 7(1), 9–12 (2017). https://doi.org/10.18178/ijmlc.2017.7.1.611
Ma, X., Li, B., Zhang, Y., Yan, M.: The canny edge detection and its improvement. In: Jingsheng Lei, F., Wang, L., Deng, H., Miao, D. (eds.) Artificial Intelligence and Computational Intelligence, pp. 50–58. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33478-8_7
Vallée, T., Yildizoğlu, M.: Présentation des algorithmes génétiques et de leurs applications en économie. Revue d’économie politique 114(6), 711–745 (2004)
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, pp. 69–93. Elsevier, The Netherlands (1991). https://doi.org/10.1016/B978-0-08-050684-5.50008-2
Riccardo Poli, W.B.: Genetic programming with one-point crossover. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 180–189. Springer London, London (1998). https://doi.org/10.1007/978-1-4471-0427-8_20
Soon, G.K., Guan, T.T., On, C.K., Alfred, R. and Anthony, P.: A comparison on the performance of crossover techniques in video game. In: 2013 IEEE International Conference on Control System, Computing and Engineering, pp. 493–498 (2013). https://doi.org/10.1109/ICCSCE.2013.6720015
Cazacu, R.: Comparative study between the improved implementation of 3 classic mutation operators for genetic algorithms. Proc. Eng. 181, 634–640 (2017). https://doi.org/10.1016/j.proeng.2017.02.444
Rani, S., Suri, B., Goyal, R.: On the effectiveness of using elitist genetic algorithm in mutation testing. Symmetry 11(9), 1145 (2019). https://doi.org/10.3390/sym11091145
Funding
The authors declare that no funding was received for this study.
Author information
Authors and Affiliations
Contributions
H.K., A.M.H., I.C., and A.B. conceptualized the study. H.K., A.M., and A.M.H. developed the methodology. H.K., A.M., A.M.H., and M.M. prepared the original draft. I.C. and A.B. supervised the project. H.K., A.M., and M.M. conducted the formal analysis. All authors, including H.K., A.M., A.M.H., M.M., I.C., and A.B., contributed to reviewing and editing the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethical approval and consent to participate
The authors affirm that the manuscript represents their original work. The ideas, perspectives, innovations, and findings presented in the manuscript are entirely their own. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Khrouch, H., Mahdaoui, A., Marhraoui Hsaini, A. et al. Improving camera parameter estimation using an adaptive genetic algorithm. SIViP 19, 113 (2025). https://doi.org/10.1007/s11760-024-03604-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11760-024-03604-4