Skip to main content
Log in

Gaitts: indoor gait recognition with multi-scale temporal-spatial information aggregation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper addresses the issue of insufficient attention to multi-scale spatiotemporal features in gait recognition algorithms for indoor scenes by designing a GaitTS (Gait Temporal-Spatial) algorithm that fuses multi-scale temporal and spatial dimension features. The proposed GaitTS algorithm processes temporal features by aggregating multiple frames of temporal information. Enhancing attention is paid to spatial features of different human body parts by partitioning feature maps into different scales. The dual focus equips the network with stronger capabilities for recognizing global and multi-scale local features, thereby improving the recognition performance of the model. Experimental results are implemented on CASIA-B, CCPG and occCASIA-B datasets. The results demonstrate that the proposed GaitTS algorithm achieves average Rank-1 accuracies of 97.9%, 95.4%, and 85.7% under normal (NM), walking with a bag (BG), and wearing a coat or jacket (CL) conditions for CASIA-B dataset, respectively, outperforming the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Phillips, P.J.: Human identification technical challenges. In: Proceedings of International Conference on Image Processing, vol. 1, pp. 1–1. IEEE, Piscataway, NJ, USA (2002)

  2. Wang, L., Tan, T., Hu, W., et al.: Automatic gait recognition based on statistical shape analysis. IEEE Trans. Image Process. 12(9), 1120–1131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: Proceedings of the IEEE 18th International Conference on Pattern Recognition, vol. 4, pp. 441–444. IEEE, Piscataway, NJ, USA (2006)

  4. Chen, X., Liu, X., Liu, W., et al.: Explainable person re-identification with attribute-guided metric distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11813–11822. IEEE, Piscataway, NJ, USA (2021)

  5. Wang, K., Boonpratatong, A., Chen, W., Ren, L., Wei, G., Qian, Z., Lu, X., Zhao, D.: The fundamental property of human leg during walking: linearity and nonlinearity. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4871–4881 (2023)

    Article  Google Scholar 

  6. Wang, X., Zhang, R., Miao, Y., An, M., Wang, S., Zhang, Y.: \(\rm PI^{{\text{2 }}}\)-Based Adaptive Impedance Control for Gait Adaption of Lower Limb Exoskeleton. IEEE/ASME Trans. Mechatron. (2024). https://doi.org/10.1109/TMECH.2024.3370954

    Article  MATH  Google Scholar 

  7. Sun, J., Zhou, L., Geng, B., Zhang, Y., Li, Y.: Leg State Estimation for Quadruped Robot by Using Probabilistic Model With Proprioceptive Feedback. IEEE/ASME Trans. Mechatron. (2024). https://doi.org/10.1109/TMECH.2024.3421251

    Article  MATH  Google Scholar 

  8. Chao, H., He, Y., Zhang, J., et al.: Gaitset: Regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8126–8133. AAAI, Menlo Park, California, USA (2019)

  9. Fan, C., Peng, Y., Cao, C., et al.: Gaitpart: Temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225–14233. IEEE, Piscataway, NJ, USA (2020)

  10. Lin, B., Zhang, S., Yu, X.: Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14648–14656. IEEE, Piscataway, NJ, USA (2021)

  11. Li, W., Hou, S., Zhang, C., et al.: An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13824–13833 (2023)

  12. Peng, Y., Cao, C., He, Z.: Occluded gait recognition. In: 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2023). IEEE

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

  14. Chu, L., Liu, Y., Wu, Z., et al.: Pp-humanseg: Connectivity-aware portrait segmentation with a large-scale teleconferencing video dataset. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 202–209. IEEE, Piscataway, NJ, USA (2022)

  15. Yang, X., Zhou, Y., Zhang, T., et al.: Gait recognition based on dynamic region analysis. Signal Process. 88(9), 2350–2356 (2008)

    Article  MATH  Google Scholar 

  16. Li, W., Kuo, C.C.J., Peng, J.: Gait recognition via gei subspace projections and collaborative representation classification. Neurocomputing 275, 1932–1945 (2018)

    Article  MATH  Google Scholar 

  17. Alotaibi, M., Mahmood, A.: Improved gait recognition based on specialized deep convolutional neural network. Comput. Vis. Image Underst. 164, 103–110 (2017)

    Article  MATH  Google Scholar 

  18. Lin, B., Zhang, S., Bao, F.: Gait recognition with multiple-temporal-scale 3d convolutional neural network. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 3054–3062. ACM, New York, USA (2020)

  19. Dou, H., Zhang, P., Su, W., et al.: Metagait: Learning to learn an omni sample adaptive representation for gait recognition. In: Proceedings of the 2022 European Conference on Computer Vision, pp. 357–374. Springer, Berlin, Germany (2022)

  20. Li, H., Qiu, Y., Zhao, H., et al.: Gaitslice: A gait recognition model based on spatio-temporal slice features. Pattern Recogn. 124, 108453 (2022)

    Article  MATH  Google Scholar 

  21. Khan, M.H., Farid, M.S., Grzegorzek, M.: Spatiotemporal features of human motion for gait recognition. SIViP 13, 369–377 (2019)

    Article  MATH  Google Scholar 

  22. Hou, S., Cao, C., Liu, X., et al.: Gait lateral network: Learning discriminative and compact representations for gait recognition. In: Proceedings of the 2020 European Conference on Computer Vision, pp. 382–398. Springer, Berlin, Germany (2020)

  23. Huang, X., Zhu, D., Wang, H., et al.: Context-sensitive temporal feature learning for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12909–12918. IEEE, Piscataway, NJ, USA (2021)

  24. Zhang, S., Wang, Y., Li, A.: Cross-view gait recognition with deep universal linear embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9095–9104. IEEE, Piscataway, NJ, USA (2021)

  25. Chai, T., Li, A., Zhang, S., et al.: Lagrange motion analysis and view embeddings for improved gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20249–20258. IEEE, Piscataway, NJ, USA (2022)

  26. Xue, W., Ai, H., Sun, T., et al.: Frame-gan: increasing the frame rate of gait videos with generative adversarial networks. Neurocomputing 380, 95–104 (2020)

    Article  MATH  Google Scholar 

  27. Gupta, S.K.: Reduction of covariate factors from silhouette image for robust gait recognition. Multimed. Tools Appl. 80(28), 36033–36058 (2021)

    Article  Google Scholar 

  28. Chen, X., Luo, X., Weng, J., et al.: Multi-view gait image generation for cross-view gait recognition. IEEE Trans. Image Process. 30, 3041–3055 (2021)

    Article  MATH  Google Scholar 

  29. Cao, Z., Simon, T., Wei, S.E., et al.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299. IEEE, Piscataway, NJ, USA (2017)

  30. Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, pp. 155–162. IEEE, Piscataway, NJ, USA (2002)

  31. Liu, W., Bao, Q., Sun, Y., et al.: Recent advances of monocular 2d and 3d human pose estimation: A deep learning perspective. ACM Comput. Surv. 55(4), 1–41 (2022)

    Article  MATH  Google Scholar 

  32. Teepe, T., Khan, A., Gilg, J., et al.: Gaitgraph: Graph convolutional network for skeleton-based gait recognition. In: Proceedings of the 2021 IEEE International Conference on Image Processing, pp. 2314–2318. IEEE, Piscataway, NJ, USA (2021)

  33. Liao, R., Yu, S., An, W., et al.: A model-based gait recognition method with body pose and human prior knowledge. Pattern Recogn. 98, 107069 (2020)

    Article  MATH  Google Scholar 

  34. Loper, M., Mahmood, N., Romero, J., et al.: Smpl: a skinned multi-person linear model. ACM Trans. Gr. 34(6), 1–16 (2015)

    Article  MATH  Google Scholar 

  35. Zheng, J., Liu, X., Liu, W., et al.: Gait recognition in the wild with dense 3d representations and a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20228–20237. IEEE, Piscataway, NJ, USA (2022)

  36. Fan, C., Liang, J., Shen, C., et al.: Opengait: Revisiting gait recognition towards better practicality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9707–9716. IEEE, Piscataway, NJ, USA (2023)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Langwen Zhang: Conceptualization; methodology; investigation; writing-original draft; writing-review and editing. Zihan Men: Writing-methodology; investigation; validation; writing-original draft. Wei Xie: Conceptualization; investigation; writing-review and editing.

Corresponding author

Correspondence to Wei Xie.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Men, Z. & Xie, W. Gaitts: indoor gait recognition with multi-scale temporal-spatial information aggregation. SIViP 19, 28 (2025). https://doi.org/10.1007/s11760-024-03611-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03611-5

Keywords

Navigation