Skip to main content

Advertisement

Log in

Feature selection algorithm assisted residual channel attention spatio-temporal auto encoder for video anomaly detection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The common use of video cameras in public and private spaces for traffic management, security, and anomaly detection has brought significant benefits. However, automatically detecting anomalous activity within this vast amount of video data offers a significant challenge. Existing video anomaly detection algorithms have limitations such as high computational cost, low performance, and a large demand for specific hardware resources. To overcome these drawbacks, this paper introduces a novel autoencoder model for accurate anomaly detection. First, the University of Central Florida (UCF) crime dataset is used to collect input data. Input videos are transformed into frames; then, keyframes are chosen from the Cosine Similarity distance measure. Selected keyframes are fed into the pre-processing stage to improve the brightness-guided pre-processing procedure for enhancing the brightness variability of keyframes. Optimal features from the pre-processed frames were taken using the chaotic gazelle optimization algorithm (CGOA) to reduce training time. Finally, residual channel attention assisted spatial–temporal autoencoder (RCAA-STAE) in detecting anomaly classes. The performance of the proposed model is estimated and compared with previous studies. The proposed model attained effective performance results in terms of accuracy, precision, recall, specificity, kappa, Root mean square error (RMSE), area under the curve (AUC), and mean square error (MSE). Accuracy performance attained by the proposed approach is 99.23% and 99.5% for normal and abnormal classes using the UCF-crime dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

References

  1. Patrikar, D.R., Parate, M.R.: Anomaly detection using edge computing in video surveillance system. Int. J. Multimed. Inf. Retr. 11(2), 85–110 (2022)

    Article  MATH  Google Scholar 

  2. Zhang, M., Wang, J., Qi, Q., Sun, H., Zhuang, Z., Ren, P., ... & Liao, J.: Multi-scale video anomaly detection by multi-grained spatio-temporal representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 17385–17394 (2024).

  3. Caetano, F., Carvalho, P., Cardoso, J.: Deep anomaly detection for in-vehicle monitoring—an application-oriented review. Appl. Sci. 12(19), 10011 (2022)

    Article  MATH  Google Scholar 

  4. Shao, W., Xiao, R., Rajapaksha, P., Wang, M., Crespi, N., Luo, Z., Minerva, R.: Video anomaly detection with NTCN-ML: A novel TCN for multi-instance learning. Pattern Recogn. 143, 109765 (2023)

    Article  Google Scholar 

  5. Chandrakala, S., Deepak, K., Revathy, G.: Anomaly detection in surveillance videos: A thematic taxonomy of deep models, review and performance analysis. Artif. Intell. Rev. 56(4), 3319–3368 (2023)

    Article  MATH  Google Scholar 

  6. Züfle, M., Moog, F., Lesch, V., Krupitzer, C., Kounev, S.: A machine learning-based workflow for automatic detection of anomalies in machine tools. ISA Trans. 125, 445–458 (2022)

    Article  Google Scholar 

  7. Affonso, G. A., De Menezes, A. L., Nunes, R. B., & Almonfrey, D.: Using artificial intelligence for anomaly detection using security cameras. In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 1–5 (2021). IEEE.

  8. Rezaee, K., Rezakhani, S.M., Khosravi, M.R., Moghimi, M.K.: A survey on deep learning-based real-time crowd anomaly detection for secure distributed video surveillance. Pers. Ubiquit. Comput. 28(1), 135–151 (2024)

    Article  MATH  Google Scholar 

  9. Nassif, A.B., Talib, M.A., Nasir, Q., Dakalbab, F.M.: Machine learning for anomaly detection: A systematic review. Ieee Access 9, 78658–78700 (2021)

    Article  Google Scholar 

  10. Wang, S., Wang, X., Zhang, L., Zhong, Y.: Auto-AD: autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021)

    MATH  Google Scholar 

  11. Thomas, A.L., Piza, E.L., Welsh, B.C., Farrington, D.P.: The internationalisation of cctv surveillance: Effects on crime and implications for emerging technologies. Int. J. Comp. Appl. Crim. Just. 46(1), 81–102 (2022)

    Google Scholar 

  12. Elmetwally, A., Eldeeb, R., Elmougy, S.: Deep learning based anomaly detection in real-time video. Multimed. Tools Appl. (2024). https://doi.org/10.1007/s11042-024-19116-9

    Article  Google Scholar 

  13. Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J. W., & Carneiro, G.: Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4975–4986 (2021).

  14. Liu, Z., Nie, Y., Long, C., Zhang, Q., & Li, G.: A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 13588–13597 (2021).

  15. Liu, Y., Liu, J., Lin, J., Zhao, M., Song, L.: Appearance-motion united auto-encoder framework for video anomaly detection. IEEE Trans. Circuits Syst. II Express Briefs 69(5), 2498–2502 (2022)

    MATH  Google Scholar 

  16. Deepak, K., Chandrakala, S., Mohan, C.K.: Residual spatiotemporal autoencoder for unsupervised video anomaly detection. SIViP 15(1), 215–222 (2021)

    Article  MATH  Google Scholar 

  17. Wang, G., Wang, Y., Qin, J., Zhang, D., Bao, X., & Huang, D.: Video anomaly detection by solving decoupled spatio-temporal jigsaw puzzles. In European Conference on Computer Vision, 494–511 (2022). Cham: Springer Nature Switzerland.

  18. Chen, Y., Liu, Z., Zhang, B., Fok, W., Qi, X., Wu, Y.C.: Mgfn: Magnitude-contrastive glance-and-focus network for weakly-supervised video anomaly detection. Proc. AAAI Confer. Artif. Intell. 37(1), 387–395 (2023)

    Google Scholar 

  19. Wan, B., Jiang, W., Fang, Y., Luo, Z., Ding, G.: Anomaly detection in video sequences: A benchmark and computational model. IET Image Proc. 15(14), 3454–3465 (2021)

    Article  MATH  Google Scholar 

  20. Cho, M., Kim, T., Kim, W.J., Cho, S., Lee, S.: Unsupervised video anomaly detection via normalizing flows with implicit latent features. Pattern Recogn. 129, 108703 (2022)

    Article  MATH  Google Scholar 

  21. Qasim, M., Verdu, E.: Video anomaly detection system using deep convolutional and recurrent models. Res. Eng. 18, 101026 (2023)

    MATH  Google Scholar 

  22. Wu, C., Shao, S., Tunc, C., Satam, P., & Hariri, S.: An explainable and efficient deep learning framework for video anomaly detection. Cluster computing, 1–23 (2022).

  23. Khan, S.W., Hafeez, Q., Khalid, M.I., Alroobaea, R., Hussain, S., Iqbal, J., Ullah, S.S.: Anomaly detection in traffic surveillance videos using deep learning. Sensors 22(17), 6563 (2022)

    Article  MATH  Google Scholar 

  24. Ul Amin, S., Kim, Y., Sami, I., Park, S., Seo, S.: An efficient attention-based strategy for anomaly detection in surveillance video. Comput. Syst. Sci. Eng. 46(3), 3939–3958 (2023)

    Article  MATH  Google Scholar 

  25. Liu, Y., Liu, J., Zhao, M., Yang, D., Zhu, X., & Song, L.: Learning appearance-motion normality for video anomaly detection. In 2022 IEEE International Conference on Multimedia and Expo (ICME), 1–6 (2022). IEEE.

  26. Le, V.T., Kim, Y.G.: Attention-based residual autoencoder for video anomaly detection. Appl. Intell. 53(3), 3240–3254 (2023)

    Article  MATH  Google Scholar 

  27. Vosta, S., Yow, K.C.: A cnn-rnn combined structure for real-world violence detection in surveillance cameras. Appl. Sci. 12(3), 1021 (2022)

    Article  MATH  Google Scholar 

  28. Castillo, A., Tabik, S., Pérez, F., Olmos, R., Herrera, F.: Brightness guided pre-processing for automatic cold steel weapon detection in surveillance videos with deep learning. Neurocomputing 330, 151–161 (2019)

    Article  Google Scholar 

  29. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Comput. Appl. 35(5), 4099–4131 (2023)

    Article  MATH  Google Scholar 

  30. DAS, S., Rao, K. S., Gopal, H. P., & Reddy, L. K.: The crime data analysis using machine learning. Spast abstracts, 1(01), (2021).

  31. Babiyola, A., Aruna, S., Sumithra, S., Buvaneswari, B.: A hybrid learning frame work for recognition abnormal events intended from surveillance videos. J. Intell Fuzzy Syst. 45(1), 1089–1102 (2023)

    Article  Google Scholar 

  32. Qasim Gandapur, M., & Verdú, E.: ConvGRU-CNN: Spatiotemporal deep learning for real-world anomaly detection in video surveillance system. (2023).

  33. Patwal, A., Diwakar, M., Tripathi, V., Singh, P.: An investigation of videos for abnormal behavior detection. Proc. Comput. Sci. 218, 2264–2272 (2023)

    Article  MATH  Google Scholar 

  34. Quintero, R. F., & Benitez-Restrepo, H. D.: Anomaly detection in surveillance videos using spatio-temporal context information.

  35. Karim, H., Doshi, K., & Yilmaz, Y.: Real-time weakly supervised video anomaly detection. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, 6848–6856 (2024).

  36. Liang, W., Zhang, J., Zhan, Y.: Weakly supervised video anomaly detection based on spatial–temporal feature fusion enhancement. SIViP 18(2), 1111–1118 (2024)

    Article  MATH  Google Scholar 

  37. Asal, B., Can, A.B.: Ensemble-based knowledge distillation for video anomaly detection. Appl. Sci. 14(3), 1032 (2024)

    Article  MATH  Google Scholar 

  38. Mumtaz, A., Sargano, A.B., Habib, Z.: AnomalyNet: A spatiotemporal motion-aware CNN approach for detecting anomalies in real-world autonomous surveillance. Vis. Comput. 40(11), 7823–7844 (2024)

    Article  MATH  Google Scholar 

  39. Li, C., Chen, M.: Dy-MIL: dynamic multiple-instance learning framework for video anomaly detection. Multimed. Syst. 30(1), 11 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  40. Basak, S., Gautam, A.: Diffusion-based normality pre-training for weakly supervised video anomaly detection. Expert Syst. Appl. 251, 124013 (2024)

    Article  MATH  Google Scholar 

  41. Adel, R., Youssif, A., & Mostafa, M.: Transfer learning model for anomalous event recognition in big video data. (2024).

Download references

Funding

No funding is provided for the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

"1M.Lakshmi Prasudha Review and Editing Preparation, Software, Formal analysis, Investigation, *2 Vidyullatha Sukhavasi Supervision, Project administration, Specifically Writing the Initial Draft, Resources. 3Kandula Neha Specifically Critical Review, Visualization, Methodology, Commentary. 4Poonam Shaylesh Lunawat Conceptualization, Writing–Original Draft Preparation, Data Curation, Validation.All authors reviewed the manuscript."

Corresponding author

Correspondence to Vidyullatha Sukhavasi.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All the authors involved have agreed to participate in this submitted article.

Consent to Publish

All the authors involved in this manuscript give full consent for publication of this submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasudha, M.L., Sukhavasi, V., Neha, K. et al. Feature selection algorithm assisted residual channel attention spatio-temporal auto encoder for video anomaly detection. SIViP 19, 148 (2025). https://doi.org/10.1007/s11760-024-03640-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03640-0

Keywords