Skip to main content
Log in

Maximum correntropy quadrature Kalman filter based interacting multiple model approach for maneuvering target tracking

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes a Maximum Correntropy Quadrature Kalman Filter Based Interacting Multiple Model approach (IMM-MCQKF) for the state estimation with the non-Gaussian noise and model uncertainty problem in the maneuvering target tracking. The performance of Quadrature Kalman Filter (QKF) will significantly decrease when the noise is non-Gaussian, especially under the heavy tailed noise. The proposed IMM-MCQKF approach not only solves this problem, but also ensures a good tracking accuracy with the mode switching caused by the target maneuvering. Specifically, a Maximum Correntropy Quadrature Kalman Filter (MCQKF) combines the maximum correntropy criterion and statistical linearization regression model into the QKF algorithm to increase the estimation accuracy under the non-Gaussian noise. Moreover, we introduce a fixed-point iteration method to ensure that the MCQKF algorithm has a closed solution. Secondly, the MCQKF is embedded into the interacting multiple model framework to address the problem of mode switching caused by target maneuvering. Finally, the simulation results demonstrate the tracking effectiveness of the IMM-MCQKF in maneuvering target tracking scenarios with non-Gaussian noise compared with IMM-EKF, IMM-UKF, IMM-CKF, IMM-QKF, AIMM-UKF, and IMM-AMTP algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available from the authors upon request.

References

  1. Muhamamd, I.H., Shoaib, A., Farzeen, M.: Multiple objects tracking using radar for autonomous driving. In: 2020 IEEE International Conference, pp. 1–14 (2020)

  2. Zhou, L.F., Kumar, V.: Robust multi-robot active target tracking against sensing and communication attacks. IEEE T. Robot. 39(3), 1768–1780 (2023)

    Article  MATH  Google Scholar 

  3. Dai, H., Zheng, R.: Adaptive tracking strategy for the positioning of millimeter-wave radar security robots. IEEE Sensors J. 24(13), 21321–21330 (2024)

    Article  Google Scholar 

  4. Du, H.C., Xie, W.X.: Track-oriented marginal Poisson multi-Bernoulli mixture filter for extended target tracking. Chinese J Electron. 32(5), 1106–1119 (2023)

    Article  MATH  Google Scholar 

  5. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE T. Aero. Elec. Sys. 41(4), 1255–1321 (2005)

    Article  MATH  Google Scholar 

  6. Zhang, L., Lan, J., Li, X.R.: Normal-gamma IMM filter for linear systems with non-Gaussian measurement noise. In: 2019 22th International Conference on Information Fusion, pp. 1–8 (2019)

  7. Arasaratnam, I., Simon, H., Elliott, R.J.: Discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature. P. IEEE. 95(5), 953–977 (2007)

    Article  MATH  Google Scholar 

  8. Chen, G., Chen, Y., Li, J.: Gaussian Kernel quadrature Kalman filter. Eur. J. Control. 71(3), 100805–100819 (2023)

    MathSciNet  MATH  Google Scholar 

  9. Huo, Y.: Robust maximum correlation entropy Kalman filtering algorithm based on S-functions under impulse noise. Signal. Image. Video. P. 44(16), 500–505 (2024)

    MATH  Google Scholar 

  10. Liu, B., Lan, J., Li, X.R.: A 2-SPRT based approach to multiple-model testing for multi-distribution detection. IEEE T. Signal. Proces. 64(12), 3221–3236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Seo, J.W., Kim, J.S., Kim, Y.S.: Vehicle localization using convolutional neural networks with IMM-EKF for automated vertical parking. In: 2022 Chinese Automation Congress, pp. 1976–1981 (2022)

  12. Nie, C., Ju, Z.Y., Sun, Z.F.: 3D object detection and tracking based on lidar-camera fusion and IMM-UKF algorithm towards highway driving. IEEE T. Emer. Topi. Comp. Inte. 7(4), 1242–1252 (2023)

    MATH  Google Scholar 

  13. Zhang, C., Cai, Y.: Estimation of aerodynamic coefficients based on IMM-CKF. In: 3rd International Conference on Control Theory and Applications, pp. 74–77 (2023)

  14. Tang, D.J., Li, G.P.: An improved AIMM-UKF maneuvering target tracking algorithm. In: 2024 5th International Conference on Computer Vision, pp. 752–758 (2024)

  15. Huang, G.: Adaptive modified transition probability IMM algorithm for maneuvering target tracking. In: 2024 9th International Conference on Electronic Technology and Information Science, pp. 427–431 (2024)

  16. Wang, W.L., Tse, C.K., Wang, S.Y.: Generalized correntropy sparse Gauss–Hermite quadrature filter for epidemic tracking on complex networks. IEEE T. Syst. Man. Cy. Sys. 20(5), 831–842 (2020)

    MATH  Google Scholar 

  17. Liu, B., Yang, H.N., Zhai, X.H.: Maximum correntropy AMM filter for linear systems with non-Gaussian noise. In: 2023 42nd Chinese Control Conference, pp. 162–170 (2023)

  18. Lan, J., Li, X.R., Jilkov, V.P.: Second-order Markov chain based multiple-model algorithm for maneuvering target tracking. IEEE T. Aero. Elec. Sys. 49(1), 3–19 (2013)

    Article  MATH  Google Scholar 

  19. Guo, L., Lan, J., Li, X.R.: Multiple-model approach to over-the-horizon radar tracking based on target perceivability. IEEE T. Aero. Elec. Sys. 58(1), 108–123 (2022)

    Article  MATH  Google Scholar 

  20. Hou, X.Y., Zhao, H.Q.: An innovative transient analysis of adaptive filter with maximum correntropy criterion. IEEE Signal. Proclet. 29(3), 1689–1693 (2022)

    Article  MATH  Google Scholar 

  21. Wang, Z., Li, Y.: Compressed positive quadrature filter. IEEE T. Automat. Contr. 78(7), 3633–3640 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Agarwal, K., Rai, C.S., Zhang, Z.Y.: Constrained complex correntropy applied to adaptive beamforming in non-Gaussian noise environment. Signal. Image. Video. P. 18(1), 2333–2343 (2024)

    Article  MATH  Google Scholar 

  23. Shi, L.: An efficient parameter optimization of maximum correntropy criterion. IEEE Signal. Proc. Let. 30(14), 538–542 (2023)

    Article  MATH  Google Scholar 

  24. Osinsky, A.: Regularization for Cholesky decomposition in MIMO detection. IEEE Wire. Comm. Lett. 12(9), 1603–1607 (2023)

    Article  MATH  Google Scholar 

  25. Zhang, T., Wang, S.Y.: Nystrom Kernel algorithm under generalized maximum correntropy criterion. IEEE Signal. Proclet. 27(1), 1535–1539 (2020)

    Article  MATH  Google Scholar 

  26. Lin, D.Y., Zhang, Q.Q., Chen, X.F.: Maximum total quaternion generalized correntropy adaptive filtering. IEEE T. Circuits-II. 71(1), 480–484 (2024)

    MATH  Google Scholar 

  27. Yu, X.K., Li, J.X.: Adaptive Kalman filtering for recursive both additive noise and multiplicative noise. IEEE T. Aero. Elec. 58(3), 1634–1649 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nanda, S., Saxena, K.: Dynamic phasor estimation using \(\ell \)1-norm constraint maximum-Correntropy criterion. IEEE T. Power. Deliver. 39(2), 1075–1087 (2024)

    Article  Google Scholar 

  29. Xu, H.: Adaptive IMM smoothing algorithms for Markov system with mismatched measurement noise covariance matrix. IEEE T. Aero. Elec. 58(3), 1–15 (2024)

    MATH  Google Scholar 

  30. Ma, L.L., Chen, J.G.: Interacting multiple model based on quadrature Kalman filtering. Comp. Engi. 37(16), 1–3 (2011)

    MATH  Google Scholar 

  31. Liu, S., Liang, Y.: Maneuvering extended object tracking based on constrained expectation maximization. Signal Process. 201(6), 70–77 (2022)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by grant for Beilin District Science and Technology Plan Project (GX2231), the Key Research and Development Program of Shaanxi (2021GY-131), and Yulin Science and Technology Plan Project (CXY-2020-037).

Author information

Authors and Affiliations

Authors

Contributions

Bao Liu: Conceptualization, Methodology, Writing-reviewand editing, Funding acquisition, Formal analysis, and Visualization. Ziwei Wu: Soft ware, Validation, Investigation, Resources, Data curation, Writing-original draft preparation.

Corresponding author

Correspondence to Bao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wu, Z. Maximum correntropy quadrature Kalman filter based interacting multiple model approach for maneuvering target tracking. SIViP 19, 76 (2025). https://doi.org/10.1007/s11760-024-03642-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03642-y

Keywords

Navigation