Skip to main content

Advertisement

Log in

FPNIE: a fast pure nighttime image enhancement method

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

To achieve a visually captivating nocturnal image that closely resembles its natural daytime counterpart, people employ a range of techniques to process the nighttime image. The primary focus lies in achieving rapid and stable unsupervised image enhancement effects specifically tailored for nocturnal scenes, without relying on daytime contrast image. However, existing neural network-based methods for enhancing nighttime image often rely on supervised paired training data, which presents challenges in practical production scenarios. The acquisition of image pairs depicting the same scene and the creation of a large-scale, feature-rich training dataset pose significant difficulties. In this study, we propose a fast pure nighttime image enhancement technique based on preprocessing inspired by the varying light sensitivity exhibited by fish during night fishing. The sensitivity of fish to light varies at different depths, analogous to the concealed richness of effective information within seemingly dark nighttime image, which can be effectively and comprehensively unveiled through preprocessing techniques. Subsequently, we employ an improved dual logarithmic image processing method based on type-II fuzzy sets to fuse the layer information obtained from preprocessing, resulting in enhanced contrast, noise reduction, color enhancement, and improved illumination with superior quality. The extensive experimental and comparative results demonstrate that our method’s robust enhancement and restoration capabilities surpass even those of state-of-the-art supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Hu, Q., Li, G.: Crowd counting study based on low light image enhancement. In: 2023 4th International Conference on Computer Engineering and Application (ICCEA), pp. 792–796 (2023). https://doi.org/10.1109/ICCEA58433.2023.10135501

  2. Xing, L., Qu, H., Xu, S., Tian, Y.: Clegan: toward low-light image enhancement for uavs via self-similarity exploitation. IEEE Trans. Geosci. Remote Sens. 61, 1–14 (2023). https://doi.org/10.1109/TGRS.2023.3279826

    Article  MATH  Google Scholar 

  3. Chen, X., Han, P., Huang, Y., Han, Y., Zhong, Y., Li, Z., Yuan, Z., Muntean, G.-M.: A genetic algorithm-based image enhancement approach for autonomous driving at night. In: 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–6 (2023). https://doi.org/10.1109/BMSB58369.2023.10211326

  4. Kumari, N., Sharma, P., Kansal, I.: An analytical review on image enhancement techniques. In: 2023 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON), pp. 1–10 (2023). https://doi.org/10.1109/DELCON57910.2023.10127353

  5. Liang, Z., Ding, X., Jin, J., Wang, Y., Wang, Y., Fu, X.: A color cast image enhancement method based on affine transform in poor visible conditions. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022). https://doi.org/10.1109/LGRS.2022.3156264

    Article  MATH  Google Scholar 

  6. Kim, Y.-T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997). https://doi.org/10.1109/30.580378

    Article  MATH  Google Scholar 

  7. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000). https://doi.org/10.1109/83.841534

    Article  MATH  Google Scholar 

  8. Yuan, Z., Zeng, J., Wei, Z., Jin, L., Zhao, S., Liu, X., Zhang, Y., Zhou, G.: Clahe-based low-light image enhancement for robust object detection in overhead power transmission system. IEEE Trans. Power Deliv. 38(3), 2240–2243 (2023). https://doi.org/10.1109/TPWRD.2023.3269206

    Article  MATH  Google Scholar 

  9. Tang, J., Mat Isa, N.A.: Bi-histogram equalization using modified histogram bins. Appl. Soft Comput. (2017). https://doi.org/10.1016/j.asoc.2017.01.053

    Article  MATH  Google Scholar 

  10. Zhu, X., Xiao, X., Tjahjadi, T., Wu, Z., Tang, J.: Image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization. arXiv preprint arXiv:2101.05922 (2021)

  11. Onyedinma, E., Onyenwe, I., Inyiama, H.: Performance evaluation of histogram equalization and fuzzy image enhancement techniques on low contrast images. arXiv preprint arXiv:1909.03957 (2019)

  12. Rahman, Z., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, 3, pp. 1003–10063 (1996). https://doi.org/10.1109/ICIP.1996.560995

  13. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018). https://doi.org/10.1109/TIP.2018.2810539

    Article  MathSciNet  MATH  Google Scholar 

  14. Ren, X., Yang, W., Cheng, W.-H., Liu, J.: Lr3m: Robust low-light enhancement via low-rank regularized retinex model. IEEE Trans. Image Process. 29, 5862–5876 (2020). https://doi.org/10.1109/TIP.2020.2984098

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, S., Li, Z., Zheng, F., Zhao, Q., Li, S.: Underwater image enhancement based on adaptive color correction and improved retinex algorithm. IEEE Access 11, 27620–27630 (2023). https://doi.org/10.1109/ACCESS.2023.3258698

    Article  MATH  Google Scholar 

  16. Tao, R., Zhou, T., Qiao, J.: Improved retinex for low illumination image enhancement of nighttime traffic. In: 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), pp. 226–229 (2022). https://doi.org/10.1109/ICCEAI55464.2022.00055

  17. Fan, J., Li, Y., Liang, B., Ding, Y.: Self-supervised low-light image enhancement based on retinex model. In: 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 10, pp. 2138–2141 (2022). https://doi.org/10.1109/ITAIC54216.2022.9836737

  18. Jha, M., Bhandari, A.K.: Camera response based nighttime image enhancement using concurrent reflectance. IEEE Trans. Instrum. Meas. 71, 1–11 (2022). https://doi.org/10.1109/TIM.2022.3165303

    Article  MATH  Google Scholar 

  19. Pashaei, E., Pashaei, E.: A fusion approach based on black hole algorithm and particle swarm optimization for image enhancement. Multimedia Tools Appl. 82(1), 297–325 (2023)

    Article  MATH  Google Scholar 

  20. Jang, J.H., Bae, Y., Ra, J.B.: Contrast-enhanced fusion of multisensor images using subband-decomposed multiscale retinex. IEEE Trans. Image Process. 21(8), 3479–3490 (2012). https://doi.org/10.1109/TIP.2012.2197014

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, S., Zhang, Y.: Detail-preserving underexposed image enhancement via optimal weighted multi-exposure fusion. IEEE Trans. Consum. Electron. 65(3), 303–311 (2019). https://doi.org/10.1109/TCE.2019.2893644

    Article  MATH  Google Scholar 

  22. Zhang, S., Hou, X.: A novel low light image enhancement method based on multi-attention generative adversarial networks. In: 2022 10th International Conference on Information Systems and Computing Technology (ISCTech), pp. 702–709 (2022). https://doi.org/10.1109/ISCTech58360.2022.00116

  23. Hari, U., Bevi, A.R.: Self-supervised learning based low light image enhancement using convolutional neural networks. In: 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), pp. 1–6 (2023). https://doi.org/10.1109/OTCON56053.2023.10113961

  24. Wu, K., Huang, J., Ma, Y., Fan, F., Ma, J.: Cycle-retinex: unpaired low-light image enhancement via retinex-inline cyclegan. IEEE Trans. Multimedia (2023). https://doi.org/10.1109/TMM.2023.3278385

    Article  MATH  Google Scholar 

  25. Li, C., Guo, C.G., Loy, C.C.: Learning to enhance low-light image via zero-reference deep curve estimation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

  26. Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022)

  27. Fu, Z., Yang, Y., Tu, X., Huang, Y., Ding, X., Ma, K.-K.: Learning a simple low-light image enhancer from paired low-light instances. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22252–22261 (2023)

  28. Yao, Z., Su, J.-N., Fan, G., Gan, M., Chen, C.L.P.: Gaca: a gradient-aware and contrastive-adaptive learning framework for low-light image enhancement. IEEE Trans. Instrum. Meas. 73, 1–14 (2024). https://doi.org/10.1109/TIM.2024.3353285

    Article  Google Scholar 

  29. Chi, K., Yuan, Y., Wang, Q.: Trinity-net: gradient-guided swin transformer-based remote sensing image dehazing and beyond. IEEE Trans. Geosci. Remote Sens. 61, 1–14 (2023). https://doi.org/10.1109/TGRS.2023.3285228

    Article  MATH  Google Scholar 

  30. Chi, K., Li, J., Jing, W., Li, Q., Wang, Q.: Neural implicit fourier transform for remote sensing shadow removal. IEEE Trans. Geosci. Remote Sens. 62, 1–10 (2024). https://doi.org/10.1109/TGRS.2024.3412368

    Article  MATH  Google Scholar 

  31. Wang, Q., Chi, K., Jing, W., Yuan, Y.: Recreating brightness from remote sensing shadow appearance. IEEE Trans. Geosci. Remote Sens. 62, 1–11 (2024). https://doi.org/10.1109/TGRS.2024.3398576

    Article  Google Scholar 

  32. Zhang, F., Shao, Y., Sun, Y., Zhu, K., Gao, C., Sang, N.: Unsupervised low-light image enhancement via histogram equalization prior. arxiv 2021. arXiv preprint arXiv:2112.01766

  33. Jia, W., Yang, J., Liu, Y., Fan, L., Ruan, Q.: Improved fast image enhancement algorithm based on fuzzy set theory. In: 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, 2, pp. 173–175 (2014). https://doi.org/10.1109/IHMSC.2014.144

  34. Kabir, M., Mobin, J., Hassanat, A., Rahman, M.S.: Image contrast enhancement using fuzzy technique with parameter determination using metaheuristics. arXiv preprint arXiv:2301.12682 (2023)

  35. Kumar, R., Bhandari, A.K.: Fuzzified contrast enhancement for nearly invisible images. IEEE Trans. Circuits Syst. Video Technol. 32(5), 2802–2813 (2022). https://doi.org/10.1109/TCSVT.2021.3098763

    Article  MATH  Google Scholar 

  36. Wu, M.: An improved fuzzy algorithmic approach applying on medical image to improve the contrast. In: 2020 International Wireless Communications and Mobile Computing (IWCMC), pp. 511–513 (2020). https://doi.org/10.1109/IWCMC48107.2020.9148497

  37. Luque-Chang, A., Cuevas, E., Chavarin, A., Perez, M.: Agent-based image contrast enhancement algorithm. IEEE Access 11, 6060–6077 (2023). https://doi.org/10.1109/ACCESS.2023.3237086

    Article  Google Scholar 

  38. Subramani, B., Veluchamy, M.: Bilateral tone mapping scheme for color correction and contrast adjustment in nearly invisible medical images. Color Res. Appl. 48(6), 748–760 (2023)

    Article  MATH  Google Scholar 

  39. Jourlin, M., Pinoli, J.-C.: A model for logarithmic image processing. J. Microsc. 149(1), 21–35 (1988)

    Article  MATH  Google Scholar 

  40. Florea, C., Florea, L.: Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions. Int. J. Appl. Math. Comput. Sci. 23(3) (2013)

  41. Akhondi-Asl, A., Hoyte, L., Lockhart, M.E., Warfield, S.K.: A logarithmic opinion pool based staple algorithm for the fusion of segmentations with associated reliability weights. IEEE Trans. Med. Imaging 33(10), 1997–2009 (2014). https://doi.org/10.1109/TMI.2014.2329603

    Article  Google Scholar 

  42. Hu, H., Cao, W., Yuan, J., Yang, J.: A low-illumination image enhancement algorithm based on morphological-retinex (mr) operator. In: 2021 IEEE/ACIS 6th International Conference on Big Data, Cloud Computing, and Data Science (BCD), pp. 66–72 (2021). IEEE

  43. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018)

  44. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015). https://doi.org/10.1109/TIP.2015.2442920

    Article  MathSciNet  MATH  Google Scholar 

  45. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  MATH  Google Scholar 

  46. Parthasarathy, S., Sankaran, P.: An automated multi scale retinex with color restoration for image enhancement. In: 2012 National Conference on Communications (NCC), pp. 1–5 (2012). https://doi.org/10.1109/NCC.2012.6176791

  47. Ahn, H., Keum, B., Kim, D., Lee, H.S.: Adaptive local tone mapping based on retinex for high dynamic range images. In: 2013 IEEE International Conference on Consumer Electronics (ICCE), pp. 153–156 (2013). IEEE

  48. Guo, X., Li, Y., Ling, H.: Lime: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017). https://doi.org/10.1109/TIP.2016.2639450

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, Y., Xiang, T., Guo, S., Lv, X., Liu, H., Liao, X.: Ehnq: subjective and objective quality evaluation of enhanced night-time images. IEEE Trans. Circuits Syst. Video Technol. 33(9), 4645–4659 (2023)

    Article  MATH  Google Scholar 

Download references

Funding

National Key Research and Development Program of China, Grant/Award Numbers: 2023YFB2504703; National Natural Science Foundation of China, Grant/Award Number: 52177132

Author information

Authors and Affiliations

Authors

Contributions

X: Conceptualization, Methodology, Resources, Project administration, Supervision, Formal analysis, Writing-review and editing S: Methodology, Software, Validation, Formal analysis, Investigation, Writing-original draft, Writing-review and editing, Visualization G: Methodology, Software, Formal analysis, Investigation, Data curation, Visualization Z: Validation, Investigation, Resources, Data curation, Writing-review and editing

Corresponding author

Correspondence to Yunhao Song.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Song, Y., Guan, L. et al. FPNIE: a fast pure nighttime image enhancement method. SIViP 19, 10 (2025). https://doi.org/10.1007/s11760-024-03648-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03648-6

Keywords

Navigation