Abstract
This paper presents a novel Compressive Sensing (CS) algorithm for Synthetic Aperture Radar (SAR) imaging, designed to overcome the resolution limitations found in conventional methods, particularly in low Signal-to-Noise Ratio (SNR) scenarios. By employing Millimeter-wave SAR, the proposed approach offers a robust solution for precise object detection and localization challenges. The study models SAR imaging using Linear Frequency Modulated signals to meet the requirements of the CS framework. Performance evaluations are conducted across various noise levels to assess the effectiveness of the proposed Modified-Orthogonal Matching Pursuit (M-OMP) algorithm. This algorithm is compared with other established algorithms, including Orthogonal Matching Pursuit, Compressive Sampling Matching Pursuit (CoSaMP), and Adaptive CoSaMP (A-CoSaMP). Results indicate that the M-OMP algorithm outperforms the other algorithms presented in this paper and surpasses existing methods in the literature in accurately identifying and localizing targets, even in low SNR conditions as \(-\)10 dB.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Figa_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Figb_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Figc_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03654-8/MediaObjects/11760_2024_3654_Fig8_HTML.png)
Similar content being viewed by others
Data availibility
No datasets were generated or analysed during the current study.
References
Soumekh, M.: Synthetic Aperture Radar Signal Processing with MATLAB Algorithms (1999)
Yuzugullu, O., Erten, E., Hajnsek, I.: Rice growth monitoring by means of X-band co-polar SAR: feature clustering and BBCH scale. IEEE Geosci. Remote Sens. Lett. 12(6), 1218–1222 (2015). https://doi.org/10.1109/LGRS.2015.2388953
Lanka, S.S., Kumar Puli, K.: Change Detection Mapping Using Landsat Synthetic Aperture Radar Images. In: International Conference on Communication, Circuits, and Systems, pp. 1–6. Bhubaneswar (2023) https://doi.org/10.1109/IC3S57698.2023.10169608
Xiong, T., Li, Y., Li, Q., Wu, K., Zhang, L., Zhang, Y., Mao, S., Han, L.: Using an equivalence-based approach to derive 2-D spectrum of BiSAR data and implementation into an RDA processor. IEEE Trans. Geosci. Remote Sens. 59(6), 4765–4774 (2021). https://doi.org/10.1109/TGRS.2020.3011420
Wang, C., Zhang, Q., Hu, J., Li, C., Shi, S., Fang, G.: An efficient algorithm based on CSA for THz stepped-frequency SAR imaging. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022). https://doi.org/10.1109/LGRS.2020.3039958
Sowjanya, L.S.L., Kumar, P.: Performance comparison of DAS and BP algorithms for Synthetic Aperture Radar Imaging. In: 2022 IEEE Microwaves, Antennas, and Propagation Conference, pp. 1726–1731 (2022). https://doi.org/10.1109/MAPCON56011.2022.10047698.
Hu, X., Ma, C., Lu, X., Yeo, T.S.: Compressive sensing SAR imaging algorithm for LFMCW systems. IEEE Trans. Geosci. Remote Sens. 59(10), 8486–8500 (2021). https://doi.org/10.1109/TGRS.2020.3046381
Kang, M.S., Kim, K.T.: Ground moving target imaging based on compressive sensing framework with single-channel SAR. IEEE Sens. J. 20(3), 1238–1250 (2020). https://doi.org/10.1109/JSEN.2019.2947114
Focsa, A., Anghel, A., Datcu, M., Toma, S.-A.: Mixed compressive sensing back-projection for SAR focusing on geocoded grid. IEEE J. Sel. Topics Appl Earth Obs. Remote Sens. 14, 4298–4309 (2021). https://doi.org/10.1109/JSTARS.2021.3072208
Zhang, F., Liang, X., Cheng, R., Wan, Y., Chen, L., Wu, Y.: Building corner reflection in MIMO SAR tomography and compressive sensing-based corner reflection suppression. IEEE Geosci. Remote Sens. Lett. 17(3), 446–450 (2020). https://doi.org/10.1109/LGRS.2019.2926301
García-Fernández, M., Álvarez-Narciandi, G., Yurduseven, O.: Single channel frequency-diverse computational imaging system for through-the-wall sensing. IEEE Trans. Geosci. Remote Sens. 62, 1–10 (2024). https://doi.org/10.1109/TGRS.2024.3383569
Pu, W.: Deep SAR imaging and motion compensation. IEEE Trans. Image Process. 30, 2232–2247 (2021). https://doi.org/10.1109/TIP.2021.3051484
Zhang, Y., Zhao, J., Zhang, B., Wu, Y.: RMA-based azimuth-range decouple method for automotive SAR sparse imaging. IEEE Trans. Aerosp. Electron. Syst. 59(4), 3480–3492 (2023). https://doi.org/10.1109/TAES.2022.3226161
Zhang, B., Xu, G., Zhou, R., Zhang, H., Hong, W.: Multi-channel back-projection algorithm for mmWave automotive MIMO SAR imaging with doppler-division multiplexing. IEEE J. Sel. Topics Sig. Process. 17(2), 445–457 (2023). https://doi.org/10.1109/JSTSP.2022.3207902
Focsa, A., Anghel, A., Datcu, M., Toma, S.A.: Mixed compressive sensing back-projection for SAR focusing on geocoded grid. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14, 4298–4309 (2021). https://doi.org/10.1109/JSTARS.2021.3072208
Sowjanya, L.S.L.N.L., Kumar, P.K.: High Resolution FMCW SAR Imaging Based on Compressive Sensing Framework. In: 2023 Signal Processing Symposium, pp. 93–98 (2023) https://doi.org/10.23919/SPSympo57300.2023.10302710
Zhou, F., Tian, X., Wang, Y., Wang, X., Bai, X.: High-resolution ISAR imaging under low SNR with sparse stepped-frequency chirp signals. IEEE Trans. Geosci. Remote Sens. 59(10), 8338–8348 (2021). https://doi.org/10.1109/TGRS.2020.3045971
Hashempour, H.R., Moradikia, M., Bastami, H., Abdelhadi, A., Soltanalian, M.: Fast and robust LRSD-based SAR/ISAR imaging and decomposition. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022). https://doi.org/10.1109/TGRS.2022.3172018
Author information
Authors and Affiliations
Contributions
L S Lakshmi Sowjanya: Conceptualization, carrying out design, computer simulation studies and measurement analysis, data organization, and drafting of the manuscript. Dr. Kishore Kumar Puli: Conceptualization, arrangement of funding source, drafting of the manuscript, overall supervision.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sowjanya, L.S.L., Puli, K.K. Compressive sensing based high-resolution millimeter-wave SAR imaging at low SNR. SIViP 19, 145 (2025). https://doi.org/10.1007/s11760-024-03654-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11760-024-03654-8