Skip to main content
Log in

PCP-YOLO: an approach integrating non-deep feature enhancement module and polarized self-attention for small object detection of multiscale defects

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The detection of small objects within multiscale defects amidst complex background interference presents a formidable challenge in industrial defect detection. To address this issue and achieve precise and expeditious identification in industrial defect detection, this study proposes PCP-YOLO, a novel network that incorporates a non-deep feature extraction module and a polarized filtering feature fusion module for small object defect detection. Initially, YOLOv8 is employed as the foundational model. Subsequently, a lightweight, non-deep feature extraction module, PotentNet, is designed and integrated into the backbone network. In the neck network, a feature fusion module incorporating polarized self-attention, C2f_ParallelPolarized, has been developed. Finally, CARAFE is utilized to substitute the original upsampling module in the neck network. The efficacy of this approach has been rigorously evaluated using three datasets: the publicly available NEU-DET and PKU-PCB datasets, and the real-world industrial dataset GC10-DET. The mAP@0.5 values achieved are 79.4%, 96.1%, and 77.6%, significantly outperforming other detection methods. The method also has a fast inference speed. These results demonstrate that PCP-YOLO exhibits substantial potential for rapid and accurate defect detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Luo, Q., Fang, X., Liu, L., Yang, C., Sun, Y.: Automated visual defect detection for flat steel surface: a survey. IEEE Trans. Instrum. Meas. 69(3), 626–644 (2020)

    Article  MATH  Google Scholar 

  2. Zhang, Y., Zhang, H., Huang, Q., Han, Y., Zhao, M.: DsP-YOLO: an anchor-free network with DsPAN for small object detection of multiscale defects. Expert Syst. Appl. 241, 122669–122685 (2024)

    Article  MATH  Google Scholar 

  3. Dong, X., Zhang, C., Wang, J., Chen, Y., Wang, D.: Real-time detection of surface cracking defects for large-sized stamped parts. Comput. Ind. 159, 104105–104119 (2024)

    Article  MATH  Google Scholar 

  4. Gao, Y., Gao, L., Li, X., Yan, X.: A semi-supervised convolutional neural network-based method for steel surface defect recognition. Robot. Comput. Integr. Manuf. 61, 101825–101832 (2020)

    Article  MATH  Google Scholar 

  5. Wang, R., Yu, H., Tang, J., Feng, B., Kang, Y., Song, K.: Optimal design of iron-cored coil sensor in magnetic flux leakage detection of thick-walled steel pipe. Meas. Sci. Technol. 34(8), 085123–085133 (2023)

    Article  Google Scholar 

  6. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37. Springer (2016)

  7. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

  9. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

  10. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intel. 39(6), 1137–1149 (2016)

    Article  MATH  Google Scholar 

  11. Tian, R., Jia, M.: Dcc-centernet: a rapid detection method for steel surface defects. Measurement 187, 110211–110225 (2022)

    Article  MATH  Google Scholar 

  12. Aboah, A., Wang, B., Bagci, U., Adu-Gyamfi, Y.: Real-time multi-class helmet violation detection using few-shot data sampling technique and yolov8. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5349–5357 (2023)

  13. Safaldin, M., Zaghden, N., Mejdoub, M.: An improved yolov8 to detect moving objects. IEEE Access 12, 59782–59806 (2024)

    Article  Google Scholar 

  14. Dong, H., Yuan, M., Wang, S., Zhang, L., Bao, W., Liu, Y., Hu, Q.: Pham-yolo: a parallel hybrid attention mechanism network for defect detection of meter in substation. Sensors 23(13), 6052–6061 (2023)

    Article  Google Scholar 

  15. Xu, L., Dong, S., Wei, H., Ren, Q., Huang, J., Liu, J.: Defect signal intelligent recognition of weld radiographs based on yolo v5-improvement. J. Manuf. Process. 99, 373–381 (2023)

    Article  Google Scholar 

  16. Lu, Q., Lin, J., Luo, L., Zhang, Y., Zhu, W.: A supervised approach for automated surface defect detection in ceramic tile quality control. Adv. Eng. Inform. 53, 101692–101704 (2022)

    Article  Google Scholar 

  17. Ling, Q., Isa, N.A.M., Asaari, M.S.M.: Precise detection for dense pcb components based on modified yolov8. IEEE Access 11, 116545–116560 (2023)

    Article  Google Scholar 

  18. Yang, S., Wang, W., Gao, S., Deng, Z.: Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin transformer. Comput. Electron. Agric. 215, 108360–108369 (2023)

    Article  Google Scholar 

  19. Cao, Y., Pang, D., Zhao, Q., Yan, Y., Jiang, Y., Tian, C., Wang, F., Li, J.: Improved yolov8-gd deep learning model for defect detection in electroluminescence images of solar photovoltaic modules. Eng. Appl. Artif. Intell. 131, 107866–107876 (2024)

    Article  MATH  Google Scholar 

  20. Chen, G., Hou, Y., Cui, T., Li, H., Shangguan, F., Cao, L.: Yolov8-cml: a lightweight target detection method for color-changing melon ripening in intelligent agriculture. Sci. Rep. 14(1), 14400–14410 (2024)

    Article  Google Scholar 

  21. Zhao, L., Liu, J., Ren, Y., Lin, C., Liu, J., Abbas, Z., Islam, M.S., Xiao, G.: Yolov8-qr: an improved yolov8 model via attention mechanism for object detection of qr code defects. Comput. Electr. Eng. 118, 109376–109390 (2024)

    Article  Google Scholar 

  22. Zhao, C., Shu, X., Yan, X., Zuo, X., Zhu, F.: Rdd-yolo: a modified yolo for detection of steel surface defects. Measurement 214, 112776–112780 (2023)

    Article  Google Scholar 

  23. Wang, Y., Wang, H., Xin, Z.: Efficient detection model of steel strip surface defects based on yolo-v7. IEEE Access 10, 133936–133944 (2022)

    Article  MATH  Google Scholar 

  24. Qian, X., Wang, X., Yang, S., Lei, J.: Lff-yolo: a yolo algorithm with lightweight feature fusion network for multi-scale defect detection. IEEE Access 10, 130339–130349 (2022)

    Article  Google Scholar 

  25. Xie, W., Sun, X., Ma, W.: A light weight multi-scale feature fusion steel surface defect detection model based on yolov8. Meas. Sci. Technol. 35, 055017–055037 (2024)

    Article  Google Scholar 

  26. Su, B., Chen, H., Zhou, Z.: Baf-detector: an efficient cnn-based detector for photovoltaic cell defect detection. IEEE Trans. Ind. Electron. 69(3), 3161–3171 (2021)

    Article  MATH  Google Scholar 

  27. Li, L., Wang, Z., Zhang, T.: Gbh-yolov5: ghost convolution with bottleneckcsp and tiny target prediction head incorporating yolov5 for pv panel defect detection. Electronics 12(3), 561–571 (2023)

  28. Liu, Z., Abeyrathna, R.R.D., Sampurno, R.M., Nakaguchi, V.M., Ahamed, T.: Faster-yolo-ap: a lightweight apple detection algorithm based on improved yolov8 with a new efficient pdwconv in orchard. Comput. Electron. Agric. 223, 109118–109127 (2024)

    Article  Google Scholar 

  29. Li, Y., Fan, Q., Huang, H., Han, Z., Gu, Q.: A modified yolov8 detection network for UAV aerial image recognition. Drones 7(5), 304–314 (2023)

    Article  MATH  Google Scholar 

  30. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: making vgg-style convnets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742 (2021)

  31. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: Carafe: content-aware reassembly of features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3007–3016 (2019)

  32. He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69(4), 1493–1504 (2019)

    Article  MATH  Google Scholar 

  33. Lv, X., Duan, F., Jiang, J.-J., Fu, X., Gan, L.: Deep metallic surface defect detection: the new benchmark and detection network. Sensors 20(6), 1562–1571 (2020)

    Article  MATH  Google Scholar 

  34. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

  35. Panboonyuen, T., Thongbai, S., Wongweeranimit, W., Santitamnont, P., Suphan, K., Charoenphon, C.: Object detection of road assets using transformer-based yolox with feature pyramid decoder on Thai highway panorama. Information 13(1), 5–15 (2021)

    Article  Google Scholar 

  36. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)

  37. Liu, R., Huang, M., Gao, Z., Cao, Z., Cao, P.: Msc-dnet: an efficient detector with multi-scale context for defect detection on strip steel surface. Measurement 209, 112467–112482 (2023)

    Article  MATH  Google Scholar 

  38. Zhang, D., Hao, X., Liang, L., Liu, W., Qin, C.: A novel deep convolutional neural network algorithm for surface defect detection. J. Comput. Des. Eng. 9(5), 1616–1632 (2022)

    MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by the Director’s Fund of the Anhui Province Key Laboratory of Intelligent Building and Building Energy Saving, Anhui Jianzhu University (Grant No. IBES2024ZR01), the Mass Spectrometry Key Technology R&D and Clinical Application of Anhui Province Jointly Constructed Discipline Key Experiments (GRANT: 2023ZPLH07), and the Anhui Province Graduate Education Quality Engineering Project (GRANT: 2023cxcysj129).

Author information

Authors and Affiliations

Authors

Contributions

PW (First Author): made substantial contributions to the conception of the work; the acquisition, analysis and interpretation of data; drafted the work. DS (Corresponding author): revised it critically for important intellectual content. JA: agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy.

Corresponding author

Correspondence to Donghui Shi.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Shi, D. & Aguilar, J. PCP-YOLO: an approach integrating non-deep feature enhancement module and polarized self-attention for small object detection of multiscale defects. SIViP 19, 71 (2025). https://doi.org/10.1007/s11760-024-03666-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03666-4

Keywords