Skip to main content

Advertisement

Log in

Estimation of vital parameters from photoplethysmography using deep learning architecture

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Vital signs such as blood pressure, heart rate, and respiration rate are continuously monitored in intensive care unit patients to assess their condition. Various methods are available for the continuous monitoring of these vital parameters. To extract parameters, current techniques place multiple sensors on the patient’s body. Patients dealing with medical issues may find it challenging and uncomfortable to have multiple electrodes placed on their bodies. To avoid placing multiple sensors on a patient’s body, the proposed method aims to extract three vital parameters—respiration rate (RR), blood pressure, and heart rate—from a single photoplethysmography sensor, using a unified deep learning model to analyze the photoplethysmographic (PPG) signal. The proposed deep learning framework combines a Convolutional Neural Network (CNN) with Bidirectional Long Short-Term Memory (Bi-LSTM) and an attention mechanism. This model effectively extracts features by integrating spatial and temporal correlations within the signal, focusing on the most relevant features necessary for estimating multiple parameters from a PPG signal. Optimized through hyperparameter tuning, the CNN-Bi-LSTM architecture achieved a prediction accuracy of 95.67%. The performance of the proposed method is evaluated using the publicly available Multiparameter Intelligent Monitoring in Intensive Care Database and compared to existing methods. The model demonstrated an average mean absolute error (MAE) ± standard deviation (SD) of 0.084 ± 0.20 for heart rate, 0.034 ± 0.23 for blood pressure, and 0.009 ± 0.05 for respiration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Yousefi, R., Nourani, M., Ostadabbas, S., Panahi, I.: A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors. IEEE J. Biomed. Health Inform. 18(2), 670–681 (2014). https://doi.org/10.1109/JBHI.2013.2264358

    Article  MATH  Google Scholar 

  2. Ye, Y., He, W., Cheng, Y., Huang, W., Zhang, Z.: A robust random forest-based approach for heart rate monitoring using photoplethysmography signal contaminated by intense motion artifacts. Sensors (Basel) 17(2), 385 (2017). https://doi.org/10.3390/s17020385

    Article  MATH  Google Scholar 

  3. Enrico, G., Giorgia, C., Giacomo, T , Seung, KY., Michele, R.: A supervised learning approach for the robust detection of heart beat in plethysmographic data. Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE, 5825–5828, (2015). https://doi.org/10.1109/EMBC.2015.7319716.

  4. Xing, X., Sun, M.: Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomed. Opt. Express 7(8), 3007–3020 (2016). https://doi.org/10.1364/BOE.7.003007

    Article  MATH  Google Scholar 

  5. Chen, W., Mc Duff, D.: Deep Phys: video-based physiological measurement using convolutional attention networks. Lect. Notes Comput. Sci. (2018). https://doi.org/10.1007/978-3-030-01216-8_22

    Article  Google Scholar 

  6. Shen, Y., Voisin, M., Aliamiri, A., Avati, A., Hannun, A., Ng, A.: Ambulatory atrial fibrillation monitoring using wearable photoplethysmography with deep. Learning 1909, 1916 (2018). https://doi.org/10.1145/3292500.3330657

    Article  Google Scholar 

  7. Miotto, R., Wang, F., Wang, S., Jiang, X.: Joel T Dudley, Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246 (2018). https://doi.org/10.1093/bib/bbx044

    Article  MATH  Google Scholar 

  8. Biswas, D., Everson, L., Liu, M., Panwar, M., Verhoef, B.-E., Patki, S., Kim, C.H., Acharyya, A., Van Hoof, C., Konijnenburg, M., Van Helleputte, N.: CorNET: Deep learning framework for PPG-based heart rate estimation and biometric identification in ambulant environment. IEEE Trans. Biomed. Circuits Syst. 13(2), 282–291 (2019). https://doi.org/10.1109/TBCAS.2019.2892297

    Article  Google Scholar 

  9. Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.-Z.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2016). https://doi.org/10.1109/JBHI.2016.2636665

    Article  Google Scholar 

  10. Jafari, A., Ganesan, A., Thalisetty, C.S.K., Sivasubramanian, V., Oates, T., Mohsenin, T.: Sensornet: a scalable and low-power deep convolutional neural network for multimodal data classification. IEEE Trans. Circuits Syst. I Regul. Pap. 66(1), 274–287 (2018). https://doi.org/10.1109/TCSI.2018.2848647

    Article  Google Scholar 

  11. Nurul Qashri Mahardika, T., Fuadah, Y.N., Jeong, D.U., Lim, K.M.: PPG signals-based blood-pressure estimation using grid search in hyperparameter optimization of CNN–LSTM. Diagnostics 13(15), 2566 (2023). https://doi.org/10.3390/diagnostics13152566

    Article  Google Scholar 

  12. Esmaelpoor, J., Moradi, M.H., Kadkhodamohammadi, A.: A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals. Comput. Biol. Med. 120, 103719 (2020). https://doi.org/10.1016/j.compbiomed.2020.103719

    Article  Google Scholar 

  13. Tanveer, M.S., Hasan, M.K.: Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network. Biomed. Signal Process. Control 51, 382–392 (2019). https://doi.org/10.1016/j.bspc.2019.02.028

    Article  Google Scholar 

  14. Mashhadi, M.B., Asadi, E., Eskandari, M., Kiani, S., Marvasti, F.: Heart rate tracking using wrist-type photoplethysmographic (PPG) signals during physical exercise with simultaneous accelerometry. IEEE Signal Process. Lett. 23(2), 227–231 (2016). https://doi.org/10.1109/LSP.2015.2509868

    Article  Google Scholar 

  15. Chowdhury, S., Hyder, R., Hafiz, M.S., Haque, M.A.: Real time robust heart rate estimation from wrist-type PPG signals using multiple reference adaptive noise cancellation. IEEE J. Biomed. Health Inform. 22(2), 450–459 (2018). https://doi.org/10.1109/JBHI.2016.2632201

    Article  Google Scholar 

  16. Ye, Y., Cheng, Y., He, W., Hou, M., Zhang, Z.: Combining nonlinear adaptive filtering and signal decomposition for motion artifact removal in wearable photoplethysmography. IEEE Sens. 16(19), 7133–7141 (2016). https://doi.org/10.1109/JSEN.2016.2597265

    Article  MATH  Google Scholar 

  17. Raghu Ram, M., Venu Madhav, K., Hari Krishna, E., Komalla, N.R., Ashoka Reddy, K.: A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter. IEEE Trans. Instrum. Measurement 61(5), 1445–1457 (2012). https://doi.org/10.1109/TIM.2011.2175832

    Article  Google Scholar 

  18. Lee, B., Han, J., Baek, H.J., Shin, J.H., Park, K.S., Yi, W.J.: Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry. Physiol. Meas. 31(12), 1585–1603 (2010). https://doi.org/10.1088/0967-3334/31/12/003

    Article  Google Scholar 

  19. Galli, A., Narduzzi, C., Giorgi, G.: Measuring heart rate during physical exercise by subspace decomposition and Kalman smoothing. IEEE Trans. Instrum. Meas. 67(5), 1102–1110 (2018). https://doi.org/10.1109/TIM.2017.2770818

    Article  MATH  Google Scholar 

  20. Bousefsaf, F., Desquins, T., Djeldjli, D., Ouzar, Y., Maaoui, C., Pruski, A.: Estimation of blood pressure waveform from facial video using a deep U-shaped network and the wavelet representation of imaging photoplethysmographic signals. SSRN Electron. J. (2022). https://doi.org/10.2139/ssrn.4032424

    Article  Google Scholar 

  21. Zhang, Y., Feng, Z.: A SVM method for continuous blood pressure estimation from a PPG signal, In Proc. 9th Int. Conf. Mach. Learn. Comput. (ICMLC), (2017), pp. 128–132

  22. Temko, A.: Accurate heart rate monitoring during physical exercises using PPG. IEEE Trans. Biomed. Eng. 64(9), 2016–2024 (2017). https://doi.org/10.1109/TBME.2017.2676243

    Article  MATH  Google Scholar 

  23. Kim, B., Yoo, S.: Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans. Biomed. Eng. 53(3), 566–568 (2006). https://doi.org/10.1109/TBME.2005.869784

    Article  MathSciNet  MATH  Google Scholar 

  24. Elgendi, M.: On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 8(1), 14–25 (2012). https://doi.org/10.2174/157340312801215782

    Article  MATH  Google Scholar 

  25. Moraes, J.L., Rocha, M.X., Vasconcelos, G.G., Vasconcelos, J.E., Filho, V.H., De Albuquerque, C., Alexandria, A.R.: Advances in photopletysmography signal analysis for biomedical applications. Sensors 18(6), 1894 (2018). https://doi.org/10.3390/s18061894

    Article  MATH  Google Scholar 

  26. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), 1–39 (2007). https://doi.org/10.1088/0967-3334/28/3/R01

    Article  MATH  Google Scholar 

  27. Hooshmand, M., Zordan, D., Del Testa, D., Grisan, E., Rossi, M.: Boosting the battery life of wearables for health monitoring through the compression of biosignals. IEEE Internet Things J. (2017). https://doi.org/10.1109/JIOT.2017.2689164

    Article  Google Scholar 

  28. Saeed, M., Villarroel, M., Reisner, A.T., Clifford, G., Lehman, L.-W., Moody, G., Heldt, T., Kyaw, T.H., Moody, B., Mark, R.G.: Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database. Critic. Care Med. 39(5), 952–960 (2011). https://doi.org/10.1097/CCM.0b013e31820a92c6

    Article  Google Scholar 

  29. Panwar, M., Gautam, A., Biswas, D., Acharyya, A.: PP-Net: a deep learning framework for PPG based blood pressure and heart rate estimation. IEEE Sens. 20(17), 10000–10011 (2020). https://doi.org/10.1109/JSEN.2020.2990864

    Article  MATH  Google Scholar 

  30. Biswas, D., Everson, L., Liu, M., Panwar, M., Verhoef, B.E., Patki, S., Kim, C.H., Acharyya, A., Van Hoof, C., Konijnenburg, M., Van Helleputte, N.: CorNET: deep learning framework for PPG based heart rate estimation and biometric identification in ambulant environment. IEEE Trans. Biomed. Circuits Syst. 13(2), 282–291 (2019). https://doi.org/10.1109/TBCAS.2019.2892297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

1, 2 and 3 wrote the main manuscript, prepared the figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to C. Helen Sulochana.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulochana, C.H., Dharshini, S.L.S. & Blessy, S.A.P.S. Estimation of vital parameters from photoplethysmography using deep learning architecture. SIViP 19, 174 (2025). https://doi.org/10.1007/s11760-024-03669-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03669-1

Keywords

Navigation