Skip to main content
Log in

Joint signal parameter estimation of DOA and frequency based on ST-ANM

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel gridless estimation algorithm to jointly estimate the direction of arrival (DOA) and frequency parameters of multiple signals. First, the concept of atomic norm is introduced to the space-time domain, and the Space-Time Atomic Norm Minimization (ST-ANM) algorithm is proposed. Then, an equivalent semidefinite programming (SDP) problem is used to solve the ST-ANM. In addition, the optimization scheme is scaled down by blocking the signal matrix and the singular value decomposition (SVD) process to reduce the computational complexity. The joint parameters are embedded in a double block Toeplitz matrix whose dimension is only related to the number of elements of the array. The algorithm works without grid mismatch and without additional pairing procedures. The simulation results demonstrate the exceptional estimation performance of the algorithm, both in terms of accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Pucci, L., Paolini, E., Giorgetti, A.: System-level analysis of joint sensing and communication based on 5G new radio. IEEE J. Select. Areas Commun. 40(7), 2043–2055 (2022). https://doi.org/10.1109/JSAC.2022.3155522

    Article  MATH  Google Scholar 

  2. Baral, A.B., Torlak, M.: Joint doppler frequency and direction of arrival estimation for TDM MIMO automotive radars. IEEE J. Select. Top. Signal Process. 15(4), 980–995 (2021). https://doi.org/10.1109/JSTSP.2021.3073572

    Article  MATH  Google Scholar 

  3. Zhao, J., Tian, Y., Wen, B., Tian, Z.: Coherent DOA estimation in sea surface observation with direction-finding HF radar. IEEE Trans. Geosci. Remote Sens. 59(8), 6651–6661 (2021). https://doi.org/10.1109/TGRS.2020.3028074

    Article  MATH  Google Scholar 

  4. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986). https://doi.org/10.1109/TAP.1986.1143830

    Article  MathSciNet  MATH  Google Scholar 

  5. Roy, R., Paulraj, A., Kailath, T.: ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1340–1342 (1986). https://doi.org/10.1109/TASSP.1986.1164935

    Article  MATH  Google Scholar 

  6. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  7. Emadi, M., Miandji, E., Unger, J.: OMP-based DOA estimation performance analysis. Digit. Signal Process. 79, 57–65 (2018). https://doi.org/10.1016/j.dsp.2018.04.006

    Article  MathSciNet  MATH  Google Scholar 

  8. Malioutov, D., Cetin, M., Willsky, A.S.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005). https://doi.org/10.1109/TSP.2005.850882

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, L., Wang, W., Guo, M.: Performance analysis for DOA estimation using compressive measurements with coprime frequencies. IEEE Sens. J. 21(6), 8297–8309 (2020). https://doi.org/10.1109/JSEN.2020.3045468

    Article  MATH  Google Scholar 

  10. Wu, Y., Jakobsson, A., Liu, L.: Super-resolution direction of arrival estimation using a minimum mean-square error framework. Signal Process. 212, 109164 (2023). https://doi.org/10.1016/j.sigpro.2023.109164

    Article  MATH  Google Scholar 

  11. Bhaskar, B., Tang, G., Recht, B.: Atomic norm denoising with applications to line spectral estimation. IEEE Trans. Signal Process. 61(23), 5987–5999 (2013). https://doi.org/10.1109/TSP.2013.2273443

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, Z., Xie, L.: Exact joint sparse frequency recovery via optimization methods. IEEE Trans. Signal Process. 64(19), 5145–5157 (2014). https://doi.org/10.1109/TSP.2016.2576422

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Chi, Y.: Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE Trans. Signal Process. 64(5), 1257–1269 (2016). https://doi.org/10.1109/TSP.2015.2496294

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, Z., Xie, L.: Enhancing sparsity and resolution via reweighted atomic norm minimization. IEEE Trans. Signal Process. 64(4), 995–1006 (2016). https://doi.org/10.1109/TSP.2015.2493987

    Article  MathSciNet  MATH  Google Scholar 

  15. Wei, Z., Wang, W., Dong, F., Liu, Q.: Gridless one-bit direction-of-arrival estimation via atomic norm denoising. IEEE Commun. Lett. 24(10), 2177–2181 (2020). https://doi.org/10.1109/LCOMM.2020.3000755

    Article  MATH  Google Scholar 

  16. Delgado, A., Sánchez-Fernández, M., Venturino, L., Tulino, A.: Super-resolution in automotive pulse radars. IEEE J. Select. Top. Signal Process. 15(4), 913–926 (2021). https://doi.org/10.1109/JSTSP.2021.3066126

    Article  MATH  Google Scholar 

  17. Chen, P., Chen, Z., Zheng, B., Wang, X.: Efficient DOA estimation method for reconfigurable intelligent surfaces aided UAV swarm. IEEE Trans. Signal Process. 70, 743–755 (2022). https://doi.org/10.1109/TSP.2022.3146791

    Article  MathSciNet  MATH  Google Scholar 

  18. Lai, H., Ye, K., Sun, H., Hong, S.: Atomic norm-based joint delay-doppler shift estimation for OFDM passive radar. IEEE Signal Process. Lett. 31, 36–40 (2024). https://doi.org/10.1109/LSP.2023.3341391

    Article  MATH  Google Scholar 

  19. Lin, J.D., Fang, W.H., Wang, Y.Y., Chen, J.T.: FSF MUSIC for joint DOA and frequency estimation and its performance analysis. IEEE Trans. Signal Process. 54(12), 4529–4542 (2006). https://doi.org/10.1109/TSP.2006.882112

    Article  MATH  Google Scholar 

  20. Lemma, A.N., Veen, A.J., Deprettere, E.F.: Analysis of joint angle-frequency estimation using ESPRIT. IEEE Trans. Signal Process. 51(5), 1264–1283 (2003). https://doi.org/10.1109/TSP.2003.810306

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, Z., Wei, P., Zhang, H., Deng, L.: Joint spectrum sensing and DOA estimation with sub-Nyquist sampling. Signal Process. 189, 108260 (2021). https://doi.org/10.1016/j.sigpro.2021.108260

    Article  MATH  Google Scholar 

  22. Jiang, S., Fu, N., Wei, Z., Qiao, L., Peng, X.: Sub-nyquist spectrum sensing and DOA estimation with space-time trilinear modeling. IEEE Trans. Instrum. Meas. 72, 6504613 (2023). https://doi.org/10.1109/TIM.2023.3302373

    Article  MATH  Google Scholar 

  23. Liu, L., Zhang, Z., Wei, P., Gao, L., Zhang, H., Jiang, H., Du, K.: Joint DOA and frequency estimation with spatial and temporal sparse sampling based on 2-D covariance matrix expansion. IEEE Sens. J. 23(19), 22880–22894 (2023). https://doi.org/10.1109/JSEN.2023.3304686

    Article  MATH  Google Scholar 

  24. Gao, Y., Ma, Y., Li, S., Zhou, X., Wu, S.: A novel joint angle and frequency estimation method based on the extended OMP algorithm. In: 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–5. (2019). https://doi.org/10.1109/GCWkshps45667.2019.9024608

  25. Han, X., Shu, T., He, J., Yu, W.: Joint angle-frequency estimation using nested sampling with one-bit quantization. Circuits Syst. Signal Process. 39(8), 4187–4197 (2020). https://doi.org/10.1007/s00034-020-01351-8

  26. Wei, S., Tao, C., Peng, J., Wang, F., Jiang, D.: A joint frequency and doa estimation method based on two-layers compressed sensinga. In: 2017 IEEE International Conference on Information and Automation (ICIA), pp. 804–809. (2017). https://doi.org/10.1109/ICInfA.2017.8079013

  27. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014). https://doi.org/10.1002/cpa.21455

  28. Tang, G., Bhaskar, B., Shah, P., Recht, B.: Compressed sensing off the grid. IEEE Trans. Signal Process. 59(11), 7465–7490 (2013). https://doi.org/10.1109/TIT.2013.2277451

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, Z., Xie, L., Stoica, P.: Vandermonde decomposition of multilevel toeplitz matrices with application to multidimensional super-resolution. IEEE Trans. Inf. Theory 62(6), 3685–3701 (2016). https://doi.org/10.1109/TIT.2016.2553041

    Article  MathSciNet  MATH  Google Scholar 

  30. Sahnoun, S., Usevich, K., Comon, P.: Multidimensional ESPRIT for damped and undamped signals: algorithm, computations and perturbation analysis. IEEE Trans. Signal Process. 65(22), 5897–5910 (2017). https://doi.org/10.1109/TSP.2017.2736512

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.T proposed the idea, coded the algorithm and wrote the draft. L.L gave constructive comments on the paper. Y.T and L.L revised the manuscript together.

Corresponding author

Correspondence to Lutao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Liu, L. Joint signal parameter estimation of DOA and frequency based on ST-ANM. SIViP 19, 116 (2025). https://doi.org/10.1007/s11760-024-03689-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03689-x

Keywords

Navigation