Abstract
This paper proposes a novel gridless estimation algorithm to jointly estimate the direction of arrival (DOA) and frequency parameters of multiple signals. First, the concept of atomic norm is introduced to the space-time domain, and the Space-Time Atomic Norm Minimization (ST-ANM) algorithm is proposed. Then, an equivalent semidefinite programming (SDP) problem is used to solve the ST-ANM. In addition, the optimization scheme is scaled down by blocking the signal matrix and the singular value decomposition (SVD) process to reduce the computational complexity. The joint parameters are embedded in a double block Toeplitz matrix whose dimension is only related to the number of elements of the array. The algorithm works without grid mismatch and without additional pairing procedures. The simulation results demonstrate the exceptional estimation performance of the algorithm, both in terms of accuracy and efficiency.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03689-x/MediaObjects/11760_2024_3689_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03689-x/MediaObjects/11760_2024_3689_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03689-x/MediaObjects/11760_2024_3689_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03689-x/MediaObjects/11760_2024_3689_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03689-x/MediaObjects/11760_2024_3689_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11760-024-03689-x/MediaObjects/11760_2024_3689_Fig6_HTML.png)
Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Pucci, L., Paolini, E., Giorgetti, A.: System-level analysis of joint sensing and communication based on 5G new radio. IEEE J. Select. Areas Commun. 40(7), 2043–2055 (2022). https://doi.org/10.1109/JSAC.2022.3155522
Baral, A.B., Torlak, M.: Joint doppler frequency and direction of arrival estimation for TDM MIMO automotive radars. IEEE J. Select. Top. Signal Process. 15(4), 980–995 (2021). https://doi.org/10.1109/JSTSP.2021.3073572
Zhao, J., Tian, Y., Wen, B., Tian, Z.: Coherent DOA estimation in sea surface observation with direction-finding HF radar. IEEE Trans. Geosci. Remote Sens. 59(8), 6651–6661 (2021). https://doi.org/10.1109/TGRS.2020.3028074
Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986). https://doi.org/10.1109/TAP.1986.1143830
Roy, R., Paulraj, A., Kailath, T.: ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1340–1342 (1986). https://doi.org/10.1109/TASSP.1986.1164935
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582
Emadi, M., Miandji, E., Unger, J.: OMP-based DOA estimation performance analysis. Digit. Signal Process. 79, 57–65 (2018). https://doi.org/10.1016/j.dsp.2018.04.006
Malioutov, D., Cetin, M., Willsky, A.S.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005). https://doi.org/10.1109/TSP.2005.850882
Liu, L., Wang, W., Guo, M.: Performance analysis for DOA estimation using compressive measurements with coprime frequencies. IEEE Sens. J. 21(6), 8297–8309 (2020). https://doi.org/10.1109/JSEN.2020.3045468
Wu, Y., Jakobsson, A., Liu, L.: Super-resolution direction of arrival estimation using a minimum mean-square error framework. Signal Process. 212, 109164 (2023). https://doi.org/10.1016/j.sigpro.2023.109164
Bhaskar, B., Tang, G., Recht, B.: Atomic norm denoising with applications to line spectral estimation. IEEE Trans. Signal Process. 61(23), 5987–5999 (2013). https://doi.org/10.1109/TSP.2013.2273443
Yang, Z., Xie, L.: Exact joint sparse frequency recovery via optimization methods. IEEE Trans. Signal Process. 64(19), 5145–5157 (2014). https://doi.org/10.1109/TSP.2016.2576422
Li, Y., Chi, Y.: Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE Trans. Signal Process. 64(5), 1257–1269 (2016). https://doi.org/10.1109/TSP.2015.2496294
Yang, Z., Xie, L.: Enhancing sparsity and resolution via reweighted atomic norm minimization. IEEE Trans. Signal Process. 64(4), 995–1006 (2016). https://doi.org/10.1109/TSP.2015.2493987
Wei, Z., Wang, W., Dong, F., Liu, Q.: Gridless one-bit direction-of-arrival estimation via atomic norm denoising. IEEE Commun. Lett. 24(10), 2177–2181 (2020). https://doi.org/10.1109/LCOMM.2020.3000755
Delgado, A., Sánchez-Fernández, M., Venturino, L., Tulino, A.: Super-resolution in automotive pulse radars. IEEE J. Select. Top. Signal Process. 15(4), 913–926 (2021). https://doi.org/10.1109/JSTSP.2021.3066126
Chen, P., Chen, Z., Zheng, B., Wang, X.: Efficient DOA estimation method for reconfigurable intelligent surfaces aided UAV swarm. IEEE Trans. Signal Process. 70, 743–755 (2022). https://doi.org/10.1109/TSP.2022.3146791
Lai, H., Ye, K., Sun, H., Hong, S.: Atomic norm-based joint delay-doppler shift estimation for OFDM passive radar. IEEE Signal Process. Lett. 31, 36–40 (2024). https://doi.org/10.1109/LSP.2023.3341391
Lin, J.D., Fang, W.H., Wang, Y.Y., Chen, J.T.: FSF MUSIC for joint DOA and frequency estimation and its performance analysis. IEEE Trans. Signal Process. 54(12), 4529–4542 (2006). https://doi.org/10.1109/TSP.2006.882112
Lemma, A.N., Veen, A.J., Deprettere, E.F.: Analysis of joint angle-frequency estimation using ESPRIT. IEEE Trans. Signal Process. 51(5), 1264–1283 (2003). https://doi.org/10.1109/TSP.2003.810306
Zhang, Z., Wei, P., Zhang, H., Deng, L.: Joint spectrum sensing and DOA estimation with sub-Nyquist sampling. Signal Process. 189, 108260 (2021). https://doi.org/10.1016/j.sigpro.2021.108260
Jiang, S., Fu, N., Wei, Z., Qiao, L., Peng, X.: Sub-nyquist spectrum sensing and DOA estimation with space-time trilinear modeling. IEEE Trans. Instrum. Meas. 72, 6504613 (2023). https://doi.org/10.1109/TIM.2023.3302373
Liu, L., Zhang, Z., Wei, P., Gao, L., Zhang, H., Jiang, H., Du, K.: Joint DOA and frequency estimation with spatial and temporal sparse sampling based on 2-D covariance matrix expansion. IEEE Sens. J. 23(19), 22880–22894 (2023). https://doi.org/10.1109/JSEN.2023.3304686
Gao, Y., Ma, Y., Li, S., Zhou, X., Wu, S.: A novel joint angle and frequency estimation method based on the extended OMP algorithm. In: 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–5. (2019). https://doi.org/10.1109/GCWkshps45667.2019.9024608
Han, X., Shu, T., He, J., Yu, W.: Joint angle-frequency estimation using nested sampling with one-bit quantization. Circuits Syst. Signal Process. 39(8), 4187–4197 (2020). https://doi.org/10.1007/s00034-020-01351-8
Wei, S., Tao, C., Peng, J., Wang, F., Jiang, D.: A joint frequency and doa estimation method based on two-layers compressed sensinga. In: 2017 IEEE International Conference on Information and Automation (ICIA), pp. 804–809. (2017). https://doi.org/10.1109/ICInfA.2017.8079013
Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014). https://doi.org/10.1002/cpa.21455
Tang, G., Bhaskar, B., Shah, P., Recht, B.: Compressed sensing off the grid. IEEE Trans. Signal Process. 59(11), 7465–7490 (2013). https://doi.org/10.1109/TIT.2013.2277451
Yang, Z., Xie, L., Stoica, P.: Vandermonde decomposition of multilevel toeplitz matrices with application to multidimensional super-resolution. IEEE Trans. Inf. Theory 62(6), 3685–3701 (2016). https://doi.org/10.1109/TIT.2016.2553041
Sahnoun, S., Usevich, K., Comon, P.: Multidimensional ESPRIT for damped and undamped signals: algorithm, computations and perturbation analysis. IEEE Trans. Signal Process. 65(22), 5897–5910 (2017). https://doi.org/10.1109/TSP.2017.2736512
Author information
Authors and Affiliations
Contributions
Y.T proposed the idea, coded the algorithm and wrote the draft. L.L gave constructive comments on the paper. Y.T and L.L revised the manuscript together.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yu, T., Liu, L. Joint signal parameter estimation of DOA and frequency based on ST-ANM. SIViP 19, 116 (2025). https://doi.org/10.1007/s11760-024-03689-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11760-024-03689-x