Skip to main content
Log in

Helmet detection algorithm based on lightweight improved YOLOv8

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Object detection technology enables real-time monitoring of helmet-wearing workers, overcoming manual limitations. However, scholarly improvements prioritize accuracy, complicating the model and rendering it unsuitable for embedded devices with limited resources. This paper presents a lightweight model enhancement approach rooted in YOLOv8. The objective is to minimize parameters and computational load while preserving high detection accuracy, aligning with the deployment constraints of embedded devices. We optimized YOLOv8’s C2f module with partial convolution, creating a C2f-Light variant with fewer parameters and less computation. Additionally, there was a redesign of the detection head, which reduced both the number of parameters and the computational complexity. Introduction of the Wise-IOU as a replacement for the CIOU, thereby reducing the harm of low-quality samples. Furthermore, we employed a channel pruning algorithm to eliminate redundant channels to reduce the model size and expedite inference. Experiments results show that LS-YOLOv8n significantly reduces parameters and computations compared to YOLOv8n, without losing accuracy. The pruned LS-YOLOv8n model exhibits a \(52\%\) improvement in FPS and has a model size of 1.9 MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, Q., Wang, J., Wang, H.: Study on impact resistance of industrial safety helmet. J. Saf. Sci. Technol. 17(3), 182–186 (2021)

    MATH  Google Scholar 

  2. Konda, S., Tiesman, H.M., Reichard, A.A.: Fatal traumatic brain injuries in the construction industry, 2003–2010. Am. J. Ind. Med. 59(3), 212–220 (2016)

    Article  Google Scholar 

  3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

  4. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. process. Syst. 28 (2015)

  5. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  6. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

  7. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  8. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  9. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37. Springer (2016)

  10. Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  11. Long, X., Cui, W., Zheng, Z.: Safety helmet wearing detection based on deep learning. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 2495–2499. IEEE (2019)

  12. Tan, S., Lu, G., Jiang, Z., Huang, L.: Improved yolov5 network model and application in safety helmet detection. In: 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), pp. 330–333 (2021). IEEE

  13. Zhang, Y.-J., Xiao, F.-S., Lu, Z.-M.: Helmet wearing state detection based on improved yolov5s. Sensors 22(24), 9843 (2022)

    Article  MATH  Google Scholar 

  14. Deng, L., Li, H., Liu, H., Gu, J.: A lightweight yolov3 algorithm used for safety helmet detection. Sci. Rep. 12(1), 10981 (2022)

    Article  MATH  Google Scholar 

  15. Chen, J., Deng, S., Wang, P., Huang, X., Liu, Y.: Lightweight helmet detection algorithm using an improved yolov4. Sensors 23(3), 1256 (2023)

    Article  Google Scholar 

  16. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)

  17. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8. https://github.com/ultralytics/ultralytics

  18. Sifre, L., Mallat, S.: Rigid-motion scattering for texture classification. arXiv preprint arXiv:1403.1687 (2014)

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)

  20. Chen, J., Kao, S.-h., He, H., Zhuo, W., Wen, S., Lee, C.-H., Chan, S.-H.G.: Run, don’t walk: Chasing higher flops for faster neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12021–12031 (2023)

  21. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-iou loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)

  22. Tong, Z., Chen, Y., Xu, Z., Yu, R.: Wise-iou: Bounding box regression loss with dynamic focusing mechanism. arXiv preprint arXiv:2301.10051 (2023)

  23. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11264–11272 (2019)

  24. Projects, R.U.: Hard Hats Dataset. Roboflow. visited on 2024-03-05 (2022). https://universe.roboflow.com/roboflow-universe-projects/hard-hats-fhbh5

  25. 964672197@qq.com: helmet Dataset. Roboflow. visited on 2024-08-08 (2021). https://universe.roboflow.com/964672197-qq-com/helmet-hxurg

  26. Shamma: Safety Dataset. Roboflow. visited on 2024-08-08 (2024). https://universe.roboflow.com/shamma/safety-bshkw

  27. Lee, J., Park, S., Mo, S., Ahn, S., Shin, J.: Layer-adaptive sparsity for the magnitude-based pruning. arXiv preprint arXiv:2010.07611 (2020)

  28. Filters’Importance, D.: Pruning filters for efficient convnets

  29. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. Adv. Neural Inf. Process. Syst. 2 (1989)

  30. Fang, G., Ma, X., Song, M., Mi, M.B., Wang, X.: Depgraph: towards any structural pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16091–16101 (2023)

  31. Adarsh, P., Rathi, P., Kumar, M.: Yolo v3-tiny: object detection and recognition using one stage improved model. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 687–694. IEEE (2020)

  32. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  33. Jocher, G.: Ultralytics YOLOv5. https://doi.org/10.5281/zenodo.3908559 . https://github.com/ultralytics/yolov5

  34. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

  35. Cui, C., Gao, T., Wei, S., Du, Y., Guo, R., Dong, S., Lu, B., Zhou, Y., Lv, X., Liu, Q., et al.: Pp-lcnet: A lightweight cpu convolutional neural network. arXiv preprint arXiv:2109.15099 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoli Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Qiu, H. & Wang, J. Helmet detection algorithm based on lightweight improved YOLOv8. SIViP 19, 20 (2025). https://doi.org/10.1007/s11760-024-03698-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03698-w

Keywords

Navigation