Skip to main content

Advertisement

Log in

Research on element image array generation method based on small number of multi-view images and homologous pixels mapping

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Mapping the multi-view image group acquired by the sparse camera array into an element image array can effectively improve the display angle of stereoscopic source reconstruction images in the integral imaging display system, and can also avoid the crosstalk problem caused by the use of microlens array. However, the number of multi-view images collected by sparse camera array is small, and it is easy to lose details, which will increase the economic cost or time cost to collect sufficient number of multi-view images. Therefore, we propose a method to generate element image array based on mapping between a small number of multi-view images and homologous pixels. The pixel mapping relationship between multi-view image group and element image array is established. The experimental results show that the element image generated by the method proposed in this paper has a larger display view field and smooth transition of each view interval after stereoscopic source reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Zhang, M., Wang, F.Y., Guo, Z., Tang, L.L., Wang, X.: Overview and development of true 3D display technology: principles and perspectives. Pattern Recognit. Artif. Intell. 35(8), 701–717 (2022). https://doi.org/10.16451/j.cnki.issn1003-6059.202208003

    Article  MATH  Google Scholar 

  2. Zhang, Y.K., Fu, Y.Q., Wang, H.Q., Li, H.F., Pan, S.W., Du, Y.Z.: High resolution integral imaging display by using a microstructure array. J. Opt. Technol. 86(2), 100–104 (2019). https://doi.org/10.1364/JOT.86.000100

    Article  MATH  Google Scholar 

  3. Li, R., Zhang, H.L., Chu, F., Wang, Q.H.: Compact integral imaging 2D/3D compatible dis-play based on liquid crystal micro-lens array. Liq. Cryst. 49(4), 512–522 (2022). https://doi.org/10.1080/02678292.2021.1979115

    Article  MATH  Google Scholar 

  4. Park, G., Hong, J., Kim, Y., Lee, B.: Enhancement of viewing angle and viewing distance in integral imaging by head tracking. In: Vancouver Canada, Digital Holography and Three-Dimensional Imaging, 2009, pp. 26–30. https://doi.org/10.1364/DH.2009.DWB27

  5. Watanabe, H., Okaichi, N., Sasaki, H., Kawakita, M.: Pixel-density and viewing-angle enhanced integral 3D display with parallel projection of multiple UHD elemental images. Opt. Express 28(17), 24731–24746 (2020). https://doi.org/10.1364/OE.397647

    Article  Google Scholar 

  6. Wang, Y., Yang, J.X., Liu, L., Piao, Y.: Computational reconstruction of integral imaging based on elemental images stitching. Acta Optica Sinica 39(11), 113–119 (2019). https://doi.org/10.3788/AOS201939.1110001

    Article  MATH  Google Scholar 

  7. Kwon, K.C., Erdenebat, M.-U., Alam, M.A., Lim, Y.T., Kim, K.G., Kim, N.: Integral imaging microscopy with enhance depth-of-field using a spatial multiplexing. Opt. Express 24(3), 2072–2083 (2016). https://doi.org/10.1364/OE.24.002072

    Article  MATH  Google Scholar 

  8. Peng, Y.Y., Yang, X.T., Zhang, S.J.: Research on micro-lens array for increasing depth of field of integral imaging. Optoelectron. Laser. 31(11), 1225–1230 (2020). https://doi.org/10.16136/j.joel.2020.11.0218

    Article  MATH  Google Scholar 

  9. Miura, M., Okaichi, N., Ara, J., Mishina, T.: Integral three-dimensional capture system with enhanced viewing angle by using camera array. In: Proceedings of SPIE The International Society for Optical Engineering, 939106–7 (2015). https://doi.org/10.1117/12.2078954

  10. Mehdi, D., Javidi, B., Watson, E.A.: Three dimensional imaging with randomly distributed sensors. Opt. Express 16(9), 6368–6377 (2018). https://doi.org/10.1364/OE.16.006368

    Article  MATH  Google Scholar 

  11. Guo, M., Si, Y.J., Lyu, Y.Z., Wang, S.G., Jin, F.S.: Elemental image array generation based on discrete viewpoint pickup and window interception in integral imaging. Appl. Opt. 54(4), 876–884 (2015). https://doi.org/10.1364/AO.54.000876

    Article  MATH  Google Scholar 

  12. Shi, X., Ai, L.Y., Yu, M., Jin, X.Y., Chen, Y.Z.: Full-parallax three dimensional display based on light field camera. Acta Optica Sinica 40(7), 98–107 (2020). https://doi.org/10.3788/AOS202040.0711005

    Article  MATH  Google Scholar 

  13. Yim, J.K., Kim, Y.M., Min, S.: Real object pickup method for real and virtual modes of integral imaging. Opt. Eng. 53(7), 073109 (2014). https://doi.org/10.1117/1.OE.53.7.073109

    Article  MATH  Google Scholar 

  14. Yuan, X.Y., Ji, M.Q., Wu, J.M., Brady, D.J., Dai, Q.H., Fang, L.: A modular hierarchical array camera. Light Sci. Appl. 10(1), 37 (2021). https://doi.org/10.1038/s41377-021-00485-x

    Article  MATH  Google Scholar 

  15. Guo, M., Lyu, Y.Z., Wang, S.G.: Real scene pickup method of elemental image array based on convergent camera array. IEEE Access. 8, 68439–68448 (2020). https://doi.org/10.1109/ACCESS.2020.2986057

    Article  MATH  Google Scholar 

  16. Ren, H., Wang, Q.H., Xing, Y., Zhao, M., Lou, L., Deng, H.: Super-multiview integral imaging scheme based on sparse camera array and CNN super resolution. Appl. Opt. 58(5), A190–A196 (2019). https://doi.org/10.1364/AO.58.00A190

    Article  MATH  Google Scholar 

  17. Kwon, K.H., Erdenebat, M.U., Lim, Y.T., Jeong, J.R., Kim, M.Y., Kim, N.: High-quality 3D display for integral imaging microscope using deep learning depth estimation algorithm. In: Conference on Lasers and Electro-Optics Pacific Rim. pp. 1–2 (2020). https://doi.org/10.1364/CLEOPR.2020.P4_11

  18. Zhang, Y., Li, T., Zhang, Y., Chen, P., Qu, Y., Wei, Z.: Computational super resolution imaging with a sparse rotational camera array. IEEE Trans. Comput. Imaging 9, 425–434 (2023). https://doi.org/10.1109/TCI.2023.3265919

    Article  MATH  Google Scholar 

  19. Hu, X.L.: Design and implementation of integral imaging system based on sparse camera array. Xi’an Univ. Technol (2022). https://doi.org/10.27398/d.cnki.gxalu.2021.001068

    Article  MATH  Google Scholar 

  20. Guyu, J.N.: Research on elemental image generation and 3D reconstruction based on integral imaging technology. Changchun Univ. Sci. Technol. (2022). https://doi.org/10.26977/d.cnki.gccgc.2022.000006

    Article  MATH  Google Scholar 

  21. Wang, Q., Piao, Y.: Depth estimation of supervised monocular images based on semantic segmentation. Visual Commun. Image Represent. 90, 103753 (2023). https://doi.org/10.1016/j.jvcir.2023.103753

    Article  MATH  Google Scholar 

  22. Deng, H., Lv, G.J., Wu, F., Yang, M., Deng, H.: Crosstalk-free integral imaging 3D display with full stereo viewing area. Laser Optoelectron. Progr. 60(08), 296–301 (2023). https://doi.org/10.3788/LOP222816

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Project of the Jilin Provincial Department of Science and Technology under Grant 20220201062GX.

Author information

Authors and Affiliations

Authors

Contributions

YP conducted model construction and algorithm research. QW built the model, researched the algorithm and wrote the manuscript. NQ and ZCX conducted data collection for the experiment.

Corresponding author

Correspondence to Yan Piao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Piao, Y., Qi, N. et al. Research on element image array generation method based on small number of multi-view images and homologous pixels mapping. SIViP 19, 155 (2025). https://doi.org/10.1007/s11760-024-03727-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03727-8

Keywords

Navigation