Skip to main content
Log in

A Linear system of reflection coefficients for tomographic imaging of breast cancer

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This study proposes an image acquisition method using scattering parameters based on the evaluation of tissue information in the reflection coefficient curves. An antenna with breast tissue in its mid-field was simulated at millimeter wave frequencies, consecutively for varying tissue types, sizes, and locations. The resulting 3468 reflection coefficient curves |S11| were assessed by Mutual Information and Machine Learning (ML) algorithms. The accuracy of prediction models achieved %96.4 in tissue size, and regression models localized tissues with errors less than their sizes. ML models extracted the tissue information from an |S11| curve, however, the extraction process varied from model to model and was not defined. Considering that the interference phenomenon identifies the relation between tissue and |S11| curve, an interference pattern was created using the |S11| curve. Then, the pattern was assumed as a coefficient matrix of a system of linear equations, where the unknowns were tissue vectors in the radiation field. The solution of this system provided the tissues’ contributions to |S11|. Therefore, a reflection pattern and |S11| curves made image acquisition attainable, and a distinctive method, Reflection Coefficient-based Linear Tomographic Imaging (RC-LTI), was presented for breast cancer detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is provided within the manuscript or supplementary information files

References

  1. Scully, O.J., Bay, B.-H., Yip, G., Yu, Y.: Breast cancer metastasis. Cancer Genomics Proteomics 9(5), 311–320 (2012)

    Google Scholar 

  2. Giordano, S.H., Buzdar, A.U., Hortobagyi, G.N.: Breast cancer in men. Annal. Intern. Med. 137(8), 678–687 (2002)

    Article  Google Scholar 

  3. Sharma, G.N., Dave, R., Sanadya, J., Sharma, P., Sharma, K.: Various types and management of breast cancer: an overview. J. Adv. Pharm. Technol. Res. 1(2), 109–126 (2010)

    Article  MATH  Google Scholar 

  4. Waks, A.G., Winer, E.P.: Breast cancer treatment: a review. Jama 321(3), 288–300 (2019)

    Article  MATH  Google Scholar 

  5. Dai, X., Cheng, H., Bai, Z., Li, J.: Breast cancer cell line classification and its relevance with breast tumor subtyping. J. Cancer 8(16), 3131 (2017)

    Article  MATH  Google Scholar 

  6. Jiang, G., Zhang, S., Yazdanparast, A., Li, M., Pawar, A.V., Liu, Y., Inavolu, S.M., Cheng, L.: Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer. BMC Genomics 17, 281–301 (2016)

    Article  Google Scholar 

  7. Vavadi, H., Mostafa, A., Zhou, F., Uddin, K.M.S., Althobaiti, M., Xu, C., Bansal, R., Ademuyiwa, F., Poplack, S., Zhu, Q.: Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging. J. Biomed. Opt. 24(2), 021203 (2018). https://doi.org/10.1117/1.JBO.24.2.021203

    Article  Google Scholar 

  8. Manohar, S., Dantuma, M.: Current and future trends in photoacoustic breast imaging. Photoacoustics 16, 100134 (2019). https://doi.org/10.1016/j.pacs.2019.04.004

    Article  Google Scholar 

  9. Zuluaga-Gómez, J., Zerhouni, N., Masry, Z.A., Devalland, C., Varnier, C.: A survey of breast cancer screening techniques: thermography and electrical impedance tomography. J. Med. Eng. Technol. 43, 305–322 (2019). https://doi.org/10.1080/03091902.2019.1664672

    Article  MATH  Google Scholar 

  10. Kratkiewicz, K., Pattyn, A., Alijabbari, N., Mehrmohammadi, M.: Ultrasound and photoacoustic imaging of breast cancer: clinical systems, challenges, and future outlook. J. Clin. Med. 11, 1165 (2022). https://doi.org/10.3390/jcm11051165

    Article  Google Scholar 

  11. Council, N.R., et al.: Mammography and beyond: developing technologies for the early detection of breast cancer (2001)

  12. Moloney, B.M., O’Loughlin, D., Abd Elwahab, S., Kerin, M.J.: Breast cancer detection-a synopsis of conventional modalities and the potential role of microwave imaging. Diagnostics 10(2), 103 (2020)

    Article  MATH  Google Scholar 

  13. Casu, M.R., Vacca, M., Tobon, J.A., Pulimeno, A., Sarwar, I., Solimene, R., Vipiana, F.: A cots-based microwave imaging system for breast-cancer detection. IEEE Trans. Biomed. Circ. Syst. 11(4), 804–814 (2017)

    Article  Google Scholar 

  14. Zhurbenko, V.: Challenges in the design of microwave imaging systems for breast cancer detection. Adv. Electr. Comput. Eng. 11(1), 91–96 (2011)

    Article  MATH  Google Scholar 

  15. Chew, K.M., Sudirman, R., Seman, N., Yong, C.Y.: Reflection coefficient detection of simulation models for microwave imaging simulation system. Bio-med. Mater. Eng. 24(1), 199–207 (2014)

    Article  MATH  Google Scholar 

  16. Miyakawa, M., Takata, S., Inotsume, K.: Development of non-uniform breast phantom and its microwave imaging for tumor detection by cp-mct. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp. 2723–2726 (2009). IEEE

  17. Martellosio, A., Pasian, M., Bozzi, M., Perregrini, L., Mazzanti, A., Svelto, F., Summers, P.E., Renne, G., Preda, L., Bellomi, M.: Dielectric properties characterization from 05 to 5.0 ghz of breast cancer tissues. IEEE Trans. Microwave Theory Tech. 65(3), 998–1011 (2016)

    Article  Google Scholar 

  18. Bevacqua, M.T., Di Meo, S., Crocco, L., Isernia, T., Pasian, M.: Millimeter-waves breast cancer imaging via inverse scattering techniques. IEEE J. Electromagnet. RF Microwaves Med. Biol. 5(3), 246–253 (2021)

    Article  MATH  Google Scholar 

  19. Di Meo, S., Espín-López, P.F., Martellosio, A., Pasian, M., Matrone, G., Bozzi, M., Magenes, G., Mazzanti, A., Perregrini, L., Svelto, F., et al.: On the feasibility of breast cancer imaging systems at millimeter-waves frequencies. IEEE Trans. Microwave Theory Tech. 65(5), 1795–1806 (2017)

    Article  Google Scholar 

  20. Di Meo, S., Matrone, G., Pasian, M.: Experimental validation on tissue-mimicking phantoms of millimeter-wave imaging for breast cancer detection. Appl. Sci. 11(1), 432 (2021)

    Article  Google Scholar 

  21. Tsai, C.-H., Chang, J., Ou Yang, L.-Y., Chen, S.-Y.: Dual-probe probe- and phase-compensated reflection-coefficient-only 3-d microwave holographic imaging. IEEE Trans. Antennas Propag. 67(3), 1884–1897 (2019). https://doi.org/10.1109/TAP.2018.2888992

    Article  MATH  Google Scholar 

  22. Martellosio, A., Pasian, M., Bozzi, M., Perregrini, L., Mazzanti, A., Svelto, F., Summers, P., Renne, G., Bellomi, M.: 0.5–50 ghz dielectric characterisation of breast cancer tissues. Electr. Lett. 51(13), 974–975 (2015)

    Article  Google Scholar 

  23. Di Meo, S., Espin-Lopez, P., Martellosio, A., Pasian, M., Bozzi, M., Peregrini, L., Mazzanti, A., Svelto, F., Summers, P., Renne, G., et al.: Experimental validation of the dielectric permittivity of breast cancer tissues up to 50 ghz. In: 2017 IEEE MTT-S international microwave workshop series on advanced materials and processes for RF and THz applications (IMWS-AMP), pp. 1–3 (2017). IEEE

  24. Di Meo, S., Espin-Lopez, P., Martellosio, A., Pasian, M., Bozzi, M., Perregrini, L., Mazzanti, A., Svelto, F., Summers, P., Renne, G., et al.: Dielectric properties of breast tissues: experimental results up to 50 ghz. In: 12th European conference on antennas and propagation (EuCAP 2018), pp. 1–5 (2018). IET

  25. Iliopoulos, I., Di Meo, S., Pasian, M., Zhadobov, M., Pouliguen, P., Potier, P., Perregrini, L., Sauleau, R., Ettorre, M.: Enhancement of penetration of millimeter waves by field focusing applied to breast cancer detection. IEEE Trans. Biomed. Eng. 68(3), 959–966 (2020)

    Article  Google Scholar 

  26. Mirbeik-Sabzevari, A., Tavassolian, N.: Tumor detection using millimeter-wave technology: differentiating between benign lesions and cancer tissues. IEEE Microwave Mag. 20(8), 30–43 (2019)

    Article  Google Scholar 

  27. Duru, İ., Güneş, N., Tabaru, T.E.: Breast cancer diagnosis: Tumor identification and localization based on millimeter-wave spectroscopy with a 33 ghz patch antenna. In: 2023 14th international conference on electrical and electronics engineering (ELECO), pp. 1–4 (2023). IEEE

  28. Duru, İ., Güneş, N., Tabaru, T.E.: Reflection curves and machine learning-based tissue characterization for early diagnosis of breast cancer with microwave imaging. In: 2024 32nd signal processing and communications applications conference (SIU), pp. 1–4 (2024). https://doi.org/10.1109/SIU61531.2024.10600876

  29. Catapano, I., Di Donato, L., Crocco, L., Bucci, O.M., Morabito, A.F., Isernia, T., Massa, R.: On quantitative microwave tomography of female breast. Progress Electromagnet. Res. 97, 75–93 (2009)

    Article  MATH  Google Scholar 

  30. Lazebnik, M., McCartney, L., Popovic, D., Watkins, C.B., Lindstrom, M.J., Harter, J., Sewall, S., Magliocco, A., Booske, J.H., Okoniewski, M., et al.: A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Phys. Med. Biol. 52(10), 2637 (2007)

    Article  Google Scholar 

  31. Das, N., Basu, B., Dutta, S., Nandi, A.: Classification of scattering parameters of body-embedded wideband textile antennas for early diagnosis and monitoring of breast cancer. Int. J. Microwave Wireless Technol. 15(2), 236–244 (2023). https://doi.org/10.1017/S1759078722000319

    Article  MATH  Google Scholar 

  32. Kuwahara, Y.: Application of s parameter to the inverse scattering problem. In: 2017 11th European conference on antennas and propagation (EUCAP), pp. 1061–1064 (2017). https://doi.org/10.23919/EuCAP.2017.7928406

  33. Ghosh, S., Basu, B., Nandi, A., Das, M.: Antenna for automated classification of mouth/neck activities using convolutional neural networks and smoothed time-frequency representations. Measurement 241, 115632 (2025). https://doi.org/10.1016/j.measurement.2024.115632

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text. N.G. and I.D. conducted simulations and prepared figures 13. N.G. and T.E.T. conceptualized the methodology and prepared figures 4-6. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nurhan Güneş.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güneş, N., Duru, İ. & Tabaru, T.E. A Linear system of reflection coefficients for tomographic imaging of breast cancer. SIViP 19, 167 (2025). https://doi.org/10.1007/s11760-024-03758-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03758-1

Keywords

Navigation