Skip to main content

Advertisement

Log in

RIEC-YOLO: an improved road defect detection model based on YOLOv8

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Detection of road defects plays a vital role in ensuring road safety. Existing road defect detection methods often struggle to simultaneously meet the requirements of accuracy and speed due to the diverse scales and complex backgrounds of road defects. This paper proposes an enhanced road defect detection model, RepViT-iEMA-CN2C2f-YOLO (RIEC-YOLO) network, based on YOLOv8. Firstly, to enhance the model’s ability to learn contextual features in crack areas, a lightweight backbone feature extraction network, RepViT-M1.5, is used to replace the base network of YOLOv8. Secondly, to suppress irrelevant background information and reduce the probability of false alarms, a ConvNeXtV2-C2f (CN2C2f) module is designed to replace some C2f modules in the neck network. Meanwhile, to more effectively differentiate crack types, a novel inverted residual EMA (iEMA) attention mechanism module is proposed, which can extract features efficiently and fuse multiple scales. Finally, this paper validates the effectiveness of the proposed improvement methods through comparative experiments and ablation studies, and compares the RIEC-YOLO model with other state-of-the-art models. Compared to the YOLOv8x, the proposed model achieves a 1.4% improvement in mAP50 with only 16.9% of the computational cost. The performance significantly exceeds models such as YOLOv8x, demonstrating more competitiveness in efficient detection of road defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Chen, H., Yao, M., Gu, Q.: Pothole detection using location-aware convolutional neural networks. Int. J. Mach. Learn. Cybernet. 11, 899–911 (2020)

    MATH  Google Scholar 

  2. Jakubec, M., Lieskovská, E., Bučko, B., Zábovská, K.: Comparison of CNN-Based models for pothole detection in real-world adverse conditions: Overview and evaluation. Appl. Sci. 13, 5810 (2023)

    MATH  Google Scholar 

  3. Administration, N.H.T.S.: National motor vehicle crash causation survey: Report to congress. National Highway Traffic Safety Administration Technical Report DOT HS 811, 059 (2008)

  4. Hu, P., Perazzi, F., Heilbron, F.C., Wang, O., Lin, Z., Saenko, K., Sclaroff, S.: Real-time semantic segmentation with fast attention. IEEE Robot Autom. Lett. 6, 263–270 (2021)

    Google Scholar 

  5. Zheng, Y., Gao, Y., Lu, S., Mosalam, K.: Multistage Semisupervised Active Learning Framework for Crack Identification, Segmentation, and Measurement of Bridges, pp. 1089–1108. In: COMPUT-AIDED CIV INF (2022)

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 580–587. (2014)

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE Int. Conf. Comput. Vis. (ICCV), pp. 2980–2988. (2017)

  8. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object Detection via Region-based Fully Convolutional Networks. (2016)

  9. Cai, Z., Vasconcelos, N.: Cascade R-CNN: Delving Into High Quality Object Detection. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 6154–6162. (2018)

  10. Liu, C., Tao, Y., Liang, J., Li, K., Chen, Y.: Object Detection Based on YOLO Network. In: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 799–803. (2018)

  11. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: Single Shot MultiBox Detector. (2015)

  12. Ale, L., Zhang, N., Li, L.: Road Damage Detection Using RetinaNet. In: 2018 Int. Conf. Big Data (Big Data), pp. 5197–5200. (2018)

  13. Mandal, V., Mussah, A.R., Adu-Gyamfi, Y.: Deep Learning Frameworks for Pavement Distress Classification: A Comparative Analysis. In: 2020 IEEE Int. Conf. Big Data (Big Data), pp. 5577–5583. (2020)

  14. Zhou, Z., Zhang, J., Gong, C.: Automatic Detection Method of Tunnel Lining multi-defects via an Enhanced You Only Look once Network, pp. 762–780. In: COMPUT-AIDED CIV INF (2022)

  15. Zhang, Y., Zuo, Z., Xu, X., Wu, J., Zhu, J., Zhang, H., Wang, J., Tian, Y.: Road damage detection using UAV images based on multi-level attention mechanism. Autom. Constr. 144, 104613 (2022)

    MATH  Google Scholar 

  16. Wang, X., Gao, H., Jia, Z., Li, Z.: BL-YOLOv8: An Improved Road defect detection model based on YOLOv8. Sensors. 23, 8361 (2023)

    MATH  Google Scholar 

  17. Wang, H., Han, X., Song, X., Su, J., Li, Y., Zheng, W., Wu, X.: Research on automatic pavement crack identification based on improved YOLOv8. Int. J. Interact. Des. Manuf. (IJIDeM) 1–11 (2024)

  18. Li, J., Yuan, C., Wang, X.: Real-time instance-level detection of asphalt pavement distress combining space-to-depth (SPD) YOLO and omni-scale network (OSNet). Autom. Constr. 155, 105062 (2023)

    MATH  Google Scholar 

  19. He, Z., Yang, W., Liu, Y., Zheng, A., Liu, J., Lou, T., Zhang, J.: Insulator defect detection based on YOLOv8s-SwinT. Information. 15, 206 (2024)

    MATH  Google Scholar 

  20. Zhou, Z., Zhao, W., Li, J., Song, K.: SPCNet: A strip pyramid ConvNeXt network for detection of road surface defects. Signal. Image Video Process. 18, 37–45 (2024)

    MATH  Google Scholar 

  21. Li, B., Qi, Y., Fan, J., Liu, Y., Liu, C.: A grid-based Classification and box‐based Detection Fusion Model for Asphalt Pavement Crack, pp. 2279–2299. In: COMPUT-AIDED CIV INF (2023)

  22. Dong, Z., Zhu, G., Fan, Z., Liu, J., Li, H., Cai, Y.: Automatic Pavement Crack Detection Based on YOLOv5-AH. In: 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 426–431. (2022)

  23. Qiu, Q., Lau, D.: Real-time detection of cracks in tiled sidewalks using YOLO-based method applied to unmanned aerial vehicle (UAV) images. Autom. Constr. 147, 104745 (2023)

    MATH  Google Scholar 

  24. Guo, G., Zhang, Z.: Road damage detection algorithm for improved YOLOv5. Sci. Rep. 12, 15523 (2022)

    Google Scholar 

  25. Wang, A., Chen, H., Lin, Z., Han, J., Ding, G.: RepViT: Revisiting Mobile CNN From ViT Perspective. pp. arXiv:2307.09283 (2023)

  26. Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.C., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., Le, Q.: Searching for MobileNetV3. In: IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 1314–1324. (2019)

  27. Hu, J., Shen, L., Sun, G.: Squeeze-and-Excitation Networks. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 7132–7141. (2018)

  28. Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I.S., Xie, S.: ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 16133–16142. (2023)

  29. Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., Huang, Z.: Efficient Multi-Scale Attention Module with Cross-Spatial Learning. In: IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 1–5. (2023)

  30. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. (2018)

  31. Arya, D., Maeda, H., Ghosh, S.K., Toshniwal, D., Omata, H., Kashiyama, T., Sekimoto, Y.: Crowdsensing-based Road Damage Detection Challenge (CRDDC’2022). In: 2022 IEEE Int. Conf. Big Data (Big Data), pp. 6378–6386. (2022)

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: IEEE Conf. Comput. Vis. Pattern Recognit, pp. 770–778. (2016)

  33. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In: Eur. Conf. Comput. Vis. (ECCV), pp. 116–131. (2018)

  34. Liu, X., Peng, H., Zheng, N., Yang, Y., Hu, H., Yuan, Y.: EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 14420–14430. (2023)

  35. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 11966–11976. (2020)

  36. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical vision transformer using shifted Windows. In: IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 9992–10002. (2021)

  37. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: Int. Conf. Comput. Vis. (ICCV), pp. 618–626. (2017)

  38. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: Convolutional Block Attention Module. In: Eur. Conf. Comput. Vis.(ECCV), pp. 3–19. (2018)

  39. Li, Y., Hou, Q., Zheng, Z., Cheng, M.M., Yang, J., Li, X.: Large selective Kernel Network for Remote sensing object detection. In: IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 16748–16759. (2023)

  40. Li, L., Fang, B., Zhu, J.: Performance analysis of the YOLOv4 algorithm for pavement damage image detection with different embedding positions of CBAM modules. Appl. Sci. 12, 10180 (2022)

    MATH  Google Scholar 

  41. Li, Y., Yao, T., Pan, Y., Mei, T.: Contextual Transformer Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI). 45, 1489–1500 (2023)

    MATH  Google Scholar 

  42. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 11531–11539. (2020)

  43. Zhang, J., Li, X., Li, J., Liu, L., Xue, Z., Zhang, B., Jiang, Z., Huang, T., Wang, Y., Wang, C.: Rethinking Mobile Block for efficient attention-based models. In: IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 1389–1400. (2023)

  44. Yang, L., Zhang, R.-Y., Li, L., Xie, X.: SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In: Marina, M., Tong, Z. (eds.) Proceedings of the 38th International Conference on Machine Learning, vol. 139, pp. 11863–11874. PMLR, Proceedings of Machine Learning Research (2021)

  45. Zhu, L., Wang, X., Ke, Z., Zhang, W., Lau, R.: BiFormer: Vision Transformer with Bi-Level Routing Attention. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 10323–10333. (2023)

  46. Hu, H., Li, Z., He, Z., Wang, L., Cao, S., Du, W.: Road surface crack detection method based on improved YOLOv5 and vehicle-mounted images. Measurement. 229, 114443 (2024)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Liu, T. contributed to the conception of the study and wrote the manuscript. Gu, M. completed the revision and touched up of the manuscript. Sun, S. was mainly responsible for drawing diagrams. All authors reviewed the manuscript file.

Corresponding author

Correspondence to Minming Gu.

Ethics declarations

Ethical approval

This article does not contain any studies involving human participants/animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Gu, M. & Sun, S. RIEC-YOLO: an improved road defect detection model based on YOLOv8. SIViP 19, 285 (2025). https://doi.org/10.1007/s11760-024-03770-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03770-5

Keywords