Skip to main content
Log in

Efficient and robust de-speckling filter for ultrasound images based on an attentional auto-encoder

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The existence of speckle noise in medical ultrasound (US) images greatly diminishes image quality and decreases diagnostic accuracy. The recent models for de-noising US images suffer from poor generalizability, a loss of texture information, and over-smoothing of the US images, especially at high noise levels. This study suggests an efficient and robust de-speckling filter for US images based on an attentional auto-encoder. This filter incorporates two distinct and efficient attention levels. The channel attention level (CAL) and large kernel attention level (KAL). These levels are integrated into the down-sampling and up-sampling steps, respectively. A skip link is added before the up-sampling stage to avoid the gradient vanishing during training. The performance of the introduced model was assessed using subjective visual evaluations and objective determination indices. The outcomes of the suggested approach on online databases achieved the minimum execution time (AET), the maximum values for structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) indices over all levels of noise, exceeding other recent algorithms. For instance, at a high level of noise, the presented technique based on the breast database achieves the following mean values: 0.005, 0.81, and 23.71 dB for the AET, SSIM, and PSNR, respectively. Also, in clinical settings, the introduced model attained the highest values for the equivalent number of looks (ENL = 18.78), contrast-to-noise ratio (CNR = 5.12), and highest resolution (\(\alpha^{\sim }\) = 0.28). These findings prove that the presented architecture is more efficient and robust for rejecting noise while maintaining image details than other recent techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Işık, G., Paçal, İ: Few-shot classification of ultrasound breast cancer images using meta-learning algorithms. Neural Comput. Appl. 36, 12047–12059 (2024)

    Article  MATH  Google Scholar 

  2. Yang, X., Zhang, B., Liu, Y., Lv, Q., Guo, J.: Automatic quantitative assessment of muscle strength based on deep learning and ultrasound. Ultrason. Imaging 46, 211–219 (2024)

    Article  MATH  Google Scholar 

  3. Lee, W., Kim, H., Lee, S., Yoo, S.-S., Chung, Y.A.: Creation of various skin sensations using pulsed focused ultrasound: evidence for functional neuromodulation. Int. J. Imaging Syst. Technol. 24, 167–174 (2014)

    Article  MATH  Google Scholar 

  4. Svilainis, L., Dumbrava, V., Kybartas, D.: Evaluation of the ultrasonic preamplifier noise voltage density. J. Circuits Syst. Comput. 23, 1450007 (2014)

    Article  Google Scholar 

  5. Zhao, L., Fong, T.C., Bell, M.A.L.: Detection of COVID-19 features in lung ultrasound images using deep neural networks. Commun. Med. 4, 41 (2024)

    Article  MATH  Google Scholar 

  6. Guo, R., Lu, G., Qin, B., Fei, B.: Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med. Biol. 44, 37–70 (2018)

    Article  MATH  Google Scholar 

  7. Fumagalli, M., Parodi, A., Ramenghi, L., Limperopoulos, C., Steggerda, S.: eur.USbrain group: ultrasound of acquired posterior fossa abnormalities in the newborn. Pediatr. Res. 87, 25–36 (2020)

    Article  Google Scholar 

  8. Xie, Z., Fan, M., Ji, N., Ji, Z., Xu, L., Ma, J.: Ultrasound wavelet spectra enable direct tissue recognition and full-color visualization. Ultrasonics 142, 107395 (2024)

    Article  MATH  Google Scholar 

  9. Adamo, F., Andria, G., Attivissimo, F., Lanzolla, A.M.L., Spadavecchia, M.: A comparative study on mother wavelet selection in ultrasound image denoising. Measurement 46, 2447–2456 (2013)

    Article  Google Scholar 

  10. Rodrigues, C., Peixoto, Z.M., Ferreira, F.M.: Ultrasound image denoising using wavelet thresholding methods in association with the bilateral filter. IEEE Latin Am. Trans. 17(11), 1800–7 (2019)

    Article  MATH  Google Scholar 

  11. Vimalraj, C., Esakkirajan, S., Sreevidya, P.: DTCWT with fuzzy based thresholding for despeckling of ultrasound images. In: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE (2017)

  12. Chen, K., Chen, L., Xiao, J., Li, J., Hu, Y., Wen, K.: Speckle reduction in digital holography with non-local means filter based on the Pearson correlation coefficient and Butterworth filter. Opt. Lett. 47, 397–400 (2022)

    Article  MATH  Google Scholar 

  13. Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–166 (1982)

    Article  MATH  Google Scholar 

  14. Kasparis, T.: Detail-preserving adaptive conditional median filters. J. Electron. Imaging 1, 358 (1992)

    Article  MATH  Google Scholar 

  15. Ying, T., Ya-Ling, C., Yu, Y., Rui-Qing, H.: Breast ultrasound image despeckling using multi-filtering DFrFT and adaptive fast BM3D. Comput. Methods Programs Biomed. 246, 108042 (2024)

    Article  Google Scholar 

  16. Tian, C., Zheng, M., Zuo, W., Zhang, S., Zhang, Y., Lin, C.-W.: A cross Transformer for image denoising. Inf. Fusion. 102, 102043 (2024)

    Article  MATH  Google Scholar 

  17. Li, Q., Li, S., Li, R., Wu, W., Dong, Y., Zhao, J., Qiang, Y., Aftab, R.: Low-dose computed tomography image reconstruction via a multistage convolutional neural network with autoencoder perceptual loss network. Quant. Imaging Med. Surg. 12, 1929–1957 (2022)

    Article  MATH  Google Scholar 

  18. Zhang, Y., Hao, D., Lin, Y., Sun, W., Zhang, J., Meng, J., Ma, F., Guo, Y., Lu, H., Li, G., Liu, J.: Structure-preserving low-dose computed tomography image denoising using a deep residual adaptive global context attention network. Quant. Imaging Med. Surg. 13, 6528–6545 (2023)

    Article  Google Scholar 

  19. Liu, J.-Y., Yang, Y.-H.: Denoising auto-encoder with recurrent skip connections and residual regression for music source separation. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE (2018)

  20. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zeng, X., Li, Y., Gao, G., Zhao, X.: Channel adaptive ultrasound image denoising method based on residual encoder-decoder networks. J. Electron. Inform. Technol. 44, 2548–2558 (2022)

    MATH  Google Scholar 

  22. Jin, X., Xie, Y., Wei, X.-S., Zhao, B.-R., Chen, Z.-M., Tan, X.: Delving deep into spatial pooling for squeeze-and-excitation networks. Pattern Recognit. 121, 108159 (2022)

    Article  MATH  Google Scholar 

  23. Li, Z., Lang, C., Liang, L., Zhao, J., Feng, S., Hou, Q., Feng, J.: Dense attentive feature enhancement for salient object detection. IEEE Trans. Circuits Syst. Video Technol. 32, 8128–8141 (2022)

    Article  MATH  Google Scholar 

  24. Song, C.H., Han, H.J., Avrithis, Y.: All the attention you need: Global-local, spatial-channel attention for image retrieval. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE (2022)

  25. Vimala, B.B., Srinivasan, S., Mathivanan, S.K., Muthukumaran, V., Babu, J.C., Herencsar, N., Vilcekova, L.: Image noise removal in ultrasound breast images based on hybrid deep learning technique. Sensors (2023). https://doi.org/10.3390/s23031167

    Article  Google Scholar 

  26. Argenti, F., Torricelli, G.: Speckle suppression in ultrasonic images based on undecimated wavelets. EURASIP J. Adv. Signal Process. (2003). https://doi.org/10.1155/s1110865703211136

    Article  MATH  Google Scholar 

  27. Loupas, T., McDicken, W.N., Allan, P.L.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36, 129–135 (1989)

    Article  Google Scholar 

  28. Lan, Y., Zhang, X.: Real-time ultrasound image despeckling using mixed-attention mechanism based residual UNet. IEEE Access. 8, 195327–195340 (2020)

    Article  MATH  Google Scholar 

  29. Yu, H., Ding, M., Zhang, X., Wu, J.: PCANet based nonlocal means method for speckle noise removal in ultrasound images. PLoS ONE 13, e0205390 (2018)

    Article  MATH  Google Scholar 

  30. Perera, M.V., Bandara, W.G.C., Valanarasu, J.M.J., Patel, V.M.: Transformer-based SAR Image Despeckling, http://arxiv.org/abs/2201.09355, (2022)

  31. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  MATH  Google Scholar 

  32. van den Heuvel, T.L.A., de Bruijn, D., de Korte, C.L., van Ginneken, B.: Automated measurement of fetal head circumference using 2D ultrasound images. PLoS ONE 13, e0200412 (2018)

    Article  Google Scholar 

  33. Parhad, S.V., Aher, S.A., Warhade, K.K.: A comparative analysis of speckle noise removal in SAR images. In: 2021 2nd Global Conference for Advancement in Technology (GCAT). IEEE (2021)

  34. Ko, J., Lee, S.: SAR image despeckling using continuous attention module. IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing. 2(15), 3–19 (2021)

    MATH  Google Scholar 

  35. Al-Asad, J.F.: Ultrasound image restoration through orthogonal and oblique subspace projection based on Lanczos decomposition. J. Electron. Imaging 30, 033001 (2021)

    Article  MATH  Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  MATH  Google Scholar 

  37. Ma, H., Han, G., Peng, L., Zhu, L., Shu, J.: Rock thin sections identification based on improved squeeze-and-excitation networks model. Comput. Geosci. 152, 104780 (2021)

    Article  MATH  Google Scholar 

  38. Wang, C., Ma, H., Zhang, X., Xiang, X., Shi, J., Liang, X., Zhao, R., Han, G.: Deciphering rod pump anomalies: a deep learning autoencoder approach. Processes. 12, 1845 (2024)

    Article  MATH  Google Scholar 

  39. Wang, P., Zhang, H., Patel, V.M.: SAR image despeckling using a convolutional neural network. IEEE Signal Process. Lett. 24, 1763–1767 (2017)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Anas Fouad Ahmed completed all the parts of the paper.

Corresponding author

Correspondence to Anas Fouad Ahmed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Code availability

Not applicable.

Consent for publication

All authors agreed on the ultimate approval of the version to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1093 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.F. Efficient and robust de-speckling filter for ultrasound images based on an attentional auto-encoder. SIViP 19, 186 (2025). https://doi.org/10.1007/s11760-024-03777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03777-y

Keywords

Navigation