Skip to main content
Log in

Spiking neural network-based edge detection model for content-based image retrieval

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Content-based image retrieval (CBIR) techniques are widely used for extracting specific images from large databases. Recent studies have shown that edge features, alongside colors, align closely with human perception in CBIR. However, most CBIR approaches detect edges using linear methods like gradients, which do not align with how the human visual system (HVS) perceives edges. Bioinspired approaches, based on HVS, have proven more effective for edge detection. This study introduces a novel bioinspired spiking neural network (SNN)-based edge detection method for CBIR. The proposed method reduces computational costs by approximately 2.5 times compared to existing SNN models and offers a simpler, easily integrated structure. When integrated into CBIR techniques using conventional edge detection methods (Sobel, Canny, and image derivatives), it increased the mean precision on the Corel-1k dataset by over 3%. These results indicate that the proposed method is effective for edge-based CBIR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Nazir, A., Ashraf, R., Hamdani, T., Ali, N.: Content based image retrieval system by using HSV color histogram, discrete wavelet transform and edge histogram descriptor. 2018 International Conference On Computing, Mathematics And Engineering Technologies (iCoMET), pp. 1–6 (2018)

  2. Raza, A., Nawaz, T., Dawood, H., Dawood, H.: Square texton histogram features for image retrieval. Multimed. Tools Appl. 78, 2719–2746 (2019)

    Article  MATH  Google Scholar 

  3. Chen, Y., Chang, C., Hsu, C.: Content-based image retrieval using block truncation coding based on edge quantization. Connect. Sci. 32, 431–448 (2020)

    Article  MATH  Google Scholar 

  4. Jain, R., Johari, P.: An improved approach of CBIR using color based HSV quantization and shape based edge detection algorithm. 2016 IEEE International Conference On Recent Trends In Electronics, Information and Communication Technology (RTEICT), pp. 1970–1975 (2016)

  5. Liu, G., Yang, J.: Content-based image retrieval using color difference histogram. Pattern Recognit. 46, 188–198 (2013)

    Article  MATH  Google Scholar 

  6. Palconit, M., Conception II, R., Alejandrino, J., Evangelista, I., Sybingco, E., Vicerra, R., Bandala, A., Dadios, E.: Counting of uneaten floating feed pellets in water surface images using ACF detector and Sobel edge operator. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), pp. 1–5 (2021)

  7. Pratt, W.: Digital image processing: PIKS scientific inside. (Wiley Online Library,2007)

  8. Chandwadkar, R., Dhole, S., Gadewar, V., Raut, D., Tiwaskar, S.: Comparison of edge detection techniques. 6th Annual Conference Of IRAJ. 8 (2013)

  9. Keil, M., Cristobal, G., Neumann, H.: Gradient representation and perception in the early visual system-a novel account of Mach band formation. Vis. Res. 46, 2659–2674 (2006)

    Article  MATH  Google Scholar 

  10. Wu, Q., McGinnity, M., Maguire, L., Belatreche, A., Glackin, B.: Edge detection based on spiking neural network model. Advanced Intelligent Computing Theories And Applications. With Aspects Of Artificial Intelligence: Third International Conference On Intelligent Computing, ICIC 2007, Qingdao, China, August 21–24, 2007. Proceedings 3, pp. 26–34 (2007)

  11. Yedjour, H., Meftah, B., Lézoray, O., Benyettou, A.: Edge detection based on Hodgkin-Huxley neuron model simulation. Cognit. Process. 18, 315–323 (2017)

    Article  MATH  Google Scholar 

  12. Vemuru, K.: Image edge detector with Gabor type filters using a spiking neural network of biologically inspired neurons. Algorithms 13, 165 (2020)

    Article  MathSciNet  Google Scholar 

  13. Kerr, D., McGinnity, T., Coleman, S., Wu, Q., Clogenson, M.: Spiking hierarchical neural network for corner detection. International Conference On Neural Computation Theory And Applications, pp. 230–235 (2011)

  14. Yuan, B., Liu, G.: Image retrieval based on gradient-structures histogram. Neural Comput. Appl. 32, 11717–11727 (2020)

    Article  MATH  Google Scholar 

  15. Singhal, A., Agarwal, M., Pachori, R.: Directional local ternary co-occurrence pattern for natural image retrieval. Multimed. Tools Appl. 80, 15901–15920 (2021)

    Article  MATH  Google Scholar 

  16. Lukac, R., Plataniotis, K., Venetsanopoulos, A.: Color image processing. Comput. Vis. Image Understand. 107, 1–2 (2007)

    Article  MATH  Google Scholar 

  17. Singha, M., Hemachandran, K.: Content based image retrieval using color and texture. Signal Image Process. 3, 39 (2012)

    MATH  Google Scholar 

  18. Shih, J., Chen, L.: Colour image retrieval based on primitives of colour moments. IEE Proc.-Vis. Image Signal Process. 149, 370–376 (2002)

    Article  MATH  Google Scholar 

  19. Murala, S., Maheshwari, R., Balasubramanian, R.: Directional local extrema patterns: a new descriptor for content based image retrieval. Int. J. Multimed. Inform. Retrieval 1, 191–203 (2012)

    Article  MATH  Google Scholar 

  20. Kilicaslan, M., Tanyeri, U., Demirci, R.: Image retrieval using one-dimensional color histogram created with entropy. Adv. Electr. Comput. Eng. 20 (2020)

  21. Dey, M., Raman, B., Verma, M.: A novel colour-and texture-based image retrieval technique using multi-resolution local extrema peak valley pattern and RGB colour histogram. Pattern Anal. Appl. 19, 1159–1179 (2016)

    Article  MathSciNet  Google Scholar 

  22. Verma, M., Raman, B., Murala, S.: Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165, 255–269 (2015)

    Article  MATH  Google Scholar 

  23. Ashraf, R., Ahmed, M., Jabbar, S., Khalid, S., Ahmad, A., Din, S., Jeon, G.: Content based image retrieval by using color descriptor and discrete wavelet transform. J. Med. Syst. 42, 1–12 (2018)

    Article  MATH  Google Scholar 

  24. Singh, C., Walia, E., Kaur, K.: Color texture description with novel local binary patterns for effective image retrieval. Pattern Recognit. 76, 50–68 (2018)

    Article  MATH  Google Scholar 

  25. Hua, J., Liu, G., Song, S.: Content-based image retrieval using color volume histograms. Int. J. Pattern Recognit. Artif. Intell. 33, 1940010 (2019)

    Article  MATH  Google Scholar 

  26. Bella, M., Vasuki, A.: An efficient image retrieval framework using fused information feature. Comput. Electr. Eng. 75, 46–60 (2019)

    Article  MATH  Google Scholar 

  27. Bhunia, A., Bhattacharyya, A., Banerjee, P., Roy, P., Murala, S.: A novel feature descriptor for image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture pattern. Pattern Anal. Appl. 23, 703–723 (2020)

    Article  Google Scholar 

  28. Vieira, G.S., Fonseca, A.U., Sousa, N.M., Felix, J.P., Soares, F.: A novel content-based image retrieval system with feature descriptor integration and accuracy noise reduction. Expert Syst. Appl. 232, 120774 (2023)

    Article  Google Scholar 

  29. Manjunath, B., Chellappa, R.: A unified approach to boundary perception: edges, textures, and illusory contours. IEEE Trans. Neural Netw. 4, 96–108 (1993)

    Article  MATH  Google Scholar 

  30. Natschläger, T., Ruf, B.: Spatial and temporal pattern analysis via spiking neurons. Netw. Comput. Neural Syst. 9, 319 (1998)

    Article  MATH  Google Scholar 

  31. Buhmann, J., Lange, T., Ramacher, U.: Image segmentation by networks of spiking neurons. Neural Comput. 17, 1010–1031 (2005)

    Article  MATH  Google Scholar 

  32. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neural Syst. 19, 295–308 (2009)

    Article  MATH  Google Scholar 

  33. Clogenson, M., Kerr, D., McGinnity, T., Coleman, S., Wu, Q.: Biologically inspired edge detection using spiking neural networks and hexagonal images. International Conference on Neural Computation Theory and Applications, pp. 381–384 (2011)

  34. Kerr, D., Coleman, S., McGinnity, M., Wu, Q., Clogenson, M.: Biologically inspired edge detection. 2011 11th International Conference on Intelligent Systems Design and Applications, pp. 802–807 (2011)

  35. Wu, Q., McGinnity, T., Maguire, L., Cai, R., Chen, M.: A visual attention model based on hierarchical spiking neural networks. Neurocomputing 116, 3–12 (2013)

    Article  MATH  Google Scholar 

  36. Kerr, D., Coleman, S., McGinnity, T.: Biologically inspired intensity and depth image edge extraction. IEEE Trans. Neural Netw. Learn. Syst. 29, 5356–5365 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. İncetaş, M.: Anisotropic diffusion filter based on spiking neural network model. Arab. J. Sci. Eng. 47, 9849–9860 (2022)

    Article  MATH  Google Scholar 

  38. Kılıçaslan, M.: Adaptive threshold selection of anisotropic diffusion filters using spiking neural network model. Signal Image Video Process. 18, 407–416 (2024)

    Article  MATH  Google Scholar 

  39. Kılıçaslan, M.: Image interpolation with spiking neural network based pixel similarity. Signal Image Video Process. 18, 6925–6936 (2024)

    Article  MATH  Google Scholar 

  40. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Article  MATH  Google Scholar 

  41. Destexhe, A.: Conductance-based integrate-and-fire models. Neural Comput. 9, 503–514 (1997)

  42. Wu, Q., McGinnity, M., Maguire, L., Glackin, B., Belatreche, A.: Learning mechanisms in networks of spiking neurons. Trends in Neural Computation, pp. 171–197 (2007)

  43. Kayhan, N., Fekri-Ershad, S.: Content based image retrieval based on weighted fusion of texture and color features derived from modified local binary patterns and local neighborhood difference patterns. Multimed. Tools Appl. 80, 32763–32790 (2021)

    Article  Google Scholar 

  44. Li, X., Liu, Y., Zheng, L., Zhang, W.: A lightweight convolutional spiking neural network for fires detection based on acoustics. Electronics 13(15), 2948 (2024)

    Article  MATH  Google Scholar 

  45. Kanaparthi, S.K., Raju, U.S.N., Shanmukhi, P., Aneesha, G.K., Rahman, M.E.U.: Image retrieval by integrating global correlation of color and intensity histograms with local texture features. Multimed. Tools Appl. 79(47), 34875–34911 (2020)

    Article  Google Scholar 

  46. Raja, R., Kumar, S., Mahmood, M.R.: Color object detection based image retrieval using ROI segmentation with multi-feature method. Wirel. Personal Commun. 112(1), 169–192 (2020)

    Article  MATH  Google Scholar 

  47. Koteswara Rao, L., Rohini, P., Pratap Reddy, L.: Local color oppugnant quantized extrema patterns for image retrieval. Multidimens. Syst. Signal Process. 30, 1413–1435 (2019)

    Article  MATH  Google Scholar 

  48. Jiang, D., Kim, J.: Image retrieval method based on image feature fusion and discrete cosine transform. Appl. Sci. 11(12), 5701 (2021)

    Article  MATH  Google Scholar 

  49. Salih, S.F., Abdulla, A.A.: An effective bi-layer content-based image retrieval technique. J. Supercomput. 79(2), 2308–2331 (2023)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding author

Correspondence to Mürsel Ozan İncetas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İncetas, M.O., Arslan, R.U. Spiking neural network-based edge detection model for content-based image retrieval. SIViP 19, 169 (2025). https://doi.org/10.1007/s11760-024-03799-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03799-6

Keywords

Navigation