Skip to main content
Log in

Enhancing image security through a fusion of chaotic map and multi-level scrambling techniques

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

To strengthen contemporary image encryption techniques and make them more secure, a new image encryption algorithm was proposed using a one-dimensional improved discrete cosine fractional chaotic map (1D-IDCF). To evaluate the randomness and ergodicity of the chaotic map, its behaviour was analysed through bifurcation diagram, Lyapunov exponent, NIST test, key sensitivity, and key space analysis. The results demonstrate that the proposed chaotic map has high unpredictability and a large Lyapunov exponent, which defines initial sensitivity. Additionally, an encryption algorithm was developed that involves pixel-level scrambling, binary bit-plane extraction, simultaneous confusion of bit planes, binary-to-gray conversion, and bit-XOR operations with a chaotic key matrix generated using the one-dimensional improved cosine fractional chaotic map (1D-IDCF). Experimental results based on various performance metrics, including information entropy, correlation coefficient, chi-square (\(\chi ^2\)) test, histogram variance, Number of Pixels Change Rate (NPCR), and Unified Average Changing Intensity (UACI), demonstrate that the proposed encryption scheme provides a significant level of unpredictability. Additionally, the proposed algorithm exhibits robustness against various attacks, including noise, data loss, and differential attacks. Furthermore, the low Peak Signal to Noise Ratio (PSNR) (8.3615 dB) indicates good encryption capability and robustness against cryptographic attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availibility statement

No datasets were generated or analysed during the current study.

References

  1. Youssef, M., Gabr, M., Alexan, W., Mansour, M.B.M., Kamal, K., Hosny, H., El-Damak, D.: Enhancing satellite image security through multiple image encryption via hyperchaos, svd, rc5, and dynamic s-box generation. IEEE Access (2024)

  2. El-Damak, D., Alexan, W., Mamdouh, E., El-Aasser, M., Fathy, A., Gabr, M.: Fibonacci q-matrix, hyperchaos, and galois field (2 8) for augmented medical image encryption. IEEE Access (2024)

  3. Alexan, W., Aly, L., Korayem, Y., Gabr, M., El-Damak, D., Fathy, A., Mansour, H.A.: Secure communication of military reconnaissance images over uav-assisted relay networks. IEEE Access (2024)

  4. Gabr, M., Diab, A., Elshoush, H.T., Chen, Y.-L., Por, L.Y., Ku, C.S., Alexan, W.: Data security utilizing a memristive coupled neural network in 3d models. IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3447075

    Article  Google Scholar 

  5. Alexan, W., Mamdouh, E., Aboshousha, A., Alsahafi, Y.S., Gabr, M., Hosny, K.M.: Stegocrypt: A robust tri-stage spatial steganography algorithm using tlm encryption and dna coding for securing digital images. IET Image Processing (2024)

  6. Coppersmith, D.: The data encryption standard (des) and its strength against attacks. IBM J. Res. Dev. 38(3), 243–250 (1994)

    Article  MATH  Google Scholar 

  7. Rijmen, V., Daemen, J.: Advanced encryption standard. In: Proceedings of Federal Information Processing Standards Publications, pp. 19–22 (2001). National Institute of Standards and Technology

  8. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, W., Li, Q., Tang, Y., Hu, M., Zeng, R.: A robust and multi chaotic dna image encryption with pixel-value pseudorandom substitution scheme. Opt. Commun. 499, 127211 (2021)

    Article  MATH  Google Scholar 

  10. Guo, Z., Sun, P.: Improved reverse zigzag transform and dna diffusion chaotic image encryption method. Multimed. Tools Appl. 81(8), 11301–11323 (2022)

    Article  MATH  Google Scholar 

  11. Shao, Z., Liu, X., Yao, Q., Qi, N., Shang, Y., Zhang, J.: Multiple image encryption based on chaotic phase mask and equal modulus decomposition in quaternion gyrator domain. Sig. Process. Image Commun. 80, 115662 (2020)

    Article  Google Scholar 

  12. Liang, Q., Zhu, C.: A new one-dimensional chaotic map for image encryption scheme based on random dna coding. Opt. & Laser Technol. 160, 109033 (2023)

    Article  MATH  Google Scholar 

  13. Liao, X., Li, K., Yin, J.: Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed. Tools Appl. 76, 20739–20753 (2017)

    Article  MATH  Google Scholar 

  14. Alexan, W., Gabr, M., Mamdouh, E., Elias, R., Aboshousha, A.: Color image cryptosystem based on sine chaotic map, 4d chen hyperchaotic map of fractional-order and hybrid dna coding. IEEE Access 11, 54928–54956 (2023)

    Article  Google Scholar 

  15. Gabr, M., Elias, R., Hosny, K.M., Papakostas, G.A., Alexan, W.: Image encryption via base-n prngs and parallel base-n s-boxes. IEEE Access 11, 85002–85030 (2023)

    Article  Google Scholar 

  16. Kong, X., Yu, F., Yao, W., Xu, C., Zhang, J., Cai, S., Wang, C.: A class of 2n+ 1 dimensional simplest hamiltonian conservative chaotic systems and fast image encryption schemes. Appl. Math. Model. 125, 351–374 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  17. Patro, K.A.K., Acharya, B.: An efficient colour image encryption scheme based on 1-d chaotic maps. J. Inf. Secur. Appl. 46, 23–41 (2019)

    MATH  Google Scholar 

  18. Zhou, Y., Bao, L., Chen, C.P.: A new 1d chaotic system for image encryption. Signal Process. 97, 172–182 (2014)

    Article  MATH  Google Scholar 

  19. Talhaoui, M.Z., Wang, X., Talhaoui, A.: A new one-dimensional chaotic map and its application in a novel permutation-less image encryption scheme. Vis. Comput. 37(7), 1757–1768 (2021)

    Article  MATH  Google Scholar 

  20. Wang, X., Wang, Q., Zhang, Y.: A fast image algorithm based on rows and columns switch. Nonlinear Dyn. 79, 1141–1149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hua, Z., Yi, S., Zhou, Y.: Medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 144, 134–144 (2018)

    Article  MATH  Google Scholar 

  22. Xu, L., Li, Z., Li, J., Hua, W.: A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78, 17–25 (2016)

    Article  MATH  Google Scholar 

  23. Pak, C., An, K., Jang, P., Kim, J., Kim, S.: A novel bit-level color image encryption using improved 1d chaotic map. Multimed. Tools Appl. 78(9), 12027–12042 (2019)

    Article  MATH  Google Scholar 

  24. Li, M., Wang, P., Liu, Y., Fan, H.: Cryptanalysis of a novel bit-level color image encryption using improved 1d chaotic map. IEEE Access 7, 145798–145806 (2019)

    Article  MATH  Google Scholar 

  25. Wang, X., Liu, P.: A new image encryption scheme based on a novel one-dimensional chaotic system. IEEE Access 8, 174463–174479 (2020)

    Article  MATH  Google Scholar 

  26. Zheng, J., Lv, T.: Image encryption algorithm based on cascaded chaotic map and improved zigzag transform. IET Image Process. 16(14), 3863–3875 (2022)

    Article  MATH  Google Scholar 

  27. Wen, H., Lin, Y., Kang, S., Zhang, X., Zou, K.: Secure image encryption algorithm using chaos-based block permutation and weighted bit planes chain diffusion. IScience 27(1) (2024)

  28. Liu, H., Kadir, A., Xu, C.: Cryptanalysis and constructing s-box based on chaotic map and backtracking. Appl. Math. Comput. 376, 125153 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Liu, R., Liu, H., Zhao, M.: Cryptanalysis and construction of keyed strong s-box based on random affine transformation matrix and 2d hyper chaotic map. Expert. Syst. Appl. 252, 124238 (2024)

    Article  MATH  Google Scholar 

  30. Xu, D., Liu, H.: Constructing a nondegenerate m-dimensional integer-domain chaotic map model over gf (2 n) with application in prng. Int. J. Bifurc. Chaos 34(13), 2450160 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, D., Liu, H.: A non-degenerate m-dimensional integer domain chaotic map model over gf (2 n). Nonlinear Dyn. (2024). https://doi.org/10.1007/s11071-024-09517-8

    Article  MATH  Google Scholar 

  32. Liu, R., Liu, H., Zhao, M.: Reveal the correlation between randomness and lyapunov exponent of n-dimensional non-degenerate hyper chaotic map. Integration 93, 102071 (2023)

    Article  MATH  Google Scholar 

  33. Liu, H., Kadir, A., Xu, C.: Color image encryption with cipher feedback and coupling chaotic map. Int. J. Bifurc. Chaos 30(12), 2050173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Midoun, M.A., Wang, X., Talhaoui, M.Z.: A sensitive dynamic mutual encryption system based on a new 1d chaotic map. Opt. Lasers Eng. 139, 106485 (2021)

    Article  MATH  Google Scholar 

  35. Mansouri, A., Wang, X.: A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme. Inf. Sci. 520, 46–62 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. L’ecuyer, P., Simard, R.: Testu01: Ac library for empirical testing of random number generators. ACM Trans. Math. Softw. (TOMS) 33(4), 1–40 (2007)

    Article  MATH  Google Scholar 

  37. Liu, H., Niu, Y., Zhao, M.: Constructing a non-degeneracy nd chaotic map model and counteracting dynamic degradation through adaptive impulsive perturbation. Expert. Syst. Appl. 251, 123933 (2024)

    Article  MATH  Google Scholar 

  38. Wang, X., Sun, H.: A chaotic image encryption algorithm based on zigzag-like transform and dna-like coding. Multimed. Tools Appl. 78(24), 34981–34997 (2019)

  39. Liu, G., Jiang, T., et al.: Color image scrambling based on zigzag transformation. Comput. Eng. & Sci. 35(5), 106 (2013)

    MATH  Google Scholar 

  40. Zhou, Y., Panetta, K., Agaian, S., Chen, C.P.: (n, k, p)-gray code for image systems. IEEE Trans. Cybern. 43(2), 515–529 (2013)

    Article  MATH  Google Scholar 

  41. Database, U.-S.I.: USC-SIPI Image Database. http://sipi.usc.edu/database/ (1977)

  42. Gui, X., Huang, J., Li, L., Li, S., Cao, J.: A novel hyperchaotic image encryption algorithm with simultaneous shuffling and diffusion. Multimed. Tools Appl. 81(15), 21975–21994 (2022)

    Article  MATH  Google Scholar 

  43. Zarei Zefreh, E., Abdali, M.: Lsie: a fast and secure latin square-based image encryption scheme. Multimed. Tools Appl. 83(3), 7939–7979 (2024)

    Article  MATH  Google Scholar 

  44. Wu, Y., Noonan, J.P., Agaian, S., et al.: Npcr and uaci randomness tests for image encryption. Cyber journals: multidisciplinary journals in science and technology. J. Sel. Areas Telecommun. (JSAT) 1(2), 31–38 (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Maram Kumar, conceptualized the study, conducted the experiments, performed the analysis,wrote the original draft; Deepak. Ch, Conceptualization, supervision, validation, review and editing.

Corresponding author

Correspondence to Deepak. Ch.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Ch, D. Enhancing image security through a fusion of chaotic map and multi-level scrambling techniques. SIViP 19, 235 (2025). https://doi.org/10.1007/s11760-025-03814-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03814-4

Keywords