Skip to main content
Log in

FFD-YOLO: a modified YOLOv8 architecture for forest fire detection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Forest fires often result in significant ecological damage and loss of human lives due to their rapid spread and difficulty in extinguishment. To enhance fire detection efficiency, we propose an improved model based on YOLOv8, named FFD-YOLO (Forest Fire Detection model based on YOLO). First, to enable the model to effectively capture flame edge and spatial information, we designed LEIEM (Light Edge Information Extraction Module) and integrated it into the backbone of YOLOv8. Second, to improve the model’s ability to detect multi-scale flames, we developed a mechanism called SLSA (Strip Large Kernel Spatial Attention). By combining this with ECA (Efficient Channel Attention), we proposed DF (Dynamic Fusion) module to replace the original upsample components of YOLOv8. Additionally, we created a synthetic dataset containing pseudo-fire examples, such as toy lights resembling flames, to enhance the model’s resistance to interference. Furthermore, we developed a complementary system capable of transmitting detected fire information to forest rangers, improving the efficiency of forest fire response. FFD-YOLO achieves a 2.9% improvement in \(AP_{0.5}\) compared to YOLOv8 and meets the requirements for real-time detection. The code and dataset will be available at https://github.com/ZehuaChenLab/FFD-YOLO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderegg, W.R., Trugman, A.T., Badgley, G., Anderson, C.M., Bartuska, A., Ciais, P., Cullenward, D., Field, C.B., Freeman, J., Goetz, S.J.: Climate-driven risks to the climate mitigation potential of forests. Science 368(6497), 7005 (2020)

    Article  Google Scholar 

  2. Yu, S., Hsueh, L.: Do wildfires exacerbate covid-19 infections and deaths in vulnerable communities? Evidence from California. J. Environ. Manage. 328, 116918 (2023)

    Article  Google Scholar 

  3. Gao, Y., Huang, W., Xu, R., Gasevic, D., Liu, Y., Yu, W., Yu, P., Yue, X., Zhou, G., Zhang, Y.: Association between long-term exposure to wildfire-related pm2. 5 and mortality: a longitudinal analysis of the UK biobank. J. Hazard. Mater. 457, 131779 (2023)

    Article  Google Scholar 

  4. Güney, C.O., Mert, A., Gülsoy, S.: Assessing fire severity in Turkey’s forest ecosystems using spectral indices from satellite images. J. Fore. Res. 34(6), 1747–1761 (2023)

    Article  Google Scholar 

  5. Ribeiro, T.F., Silva, F., Moreira, J., Costa, R.L.D.C.: Burned area semantic segmentation: a novel dataset and evaluation using convolutional networks. ISPRS J. Photogrammetry Remote Sens. 202, 565–580 (2023)

    Article  MATH  Google Scholar 

  6. Fouda, M.M., Sakib, S., Fadlullah, Z.M., Nasser, N., Guizani, M.: A lightweight hierarchical AI model for UAV-enabled edge computing with forest-fire detection use-case. IEEE Netw. 36(6), 38–45 (2022)

    Article  Google Scholar 

  7. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)

  8. Zhao, H., Jin, J., Liu, Y., Guo, Y., Shen, Y.: Fsdf: a high-performance fire detection framework. Expert Syst. Appl. 238, 121665 (2024)

    Article  Google Scholar 

  9. Jeon, M., Choi, H.-S., Lee, J., Kang, M.: Multi-scale prediction for fire detection using convolutional neural network. Fire Technol. 57(5), 2533–2551 (2021)

    Article  MATH  Google Scholar 

  10. Dogan, S., Barua, P.D., Kutlu, H., Baygin, M., Fujita, H., Tuncer, T., Acharya, U.R.: Automated accurate fire detection system using ensemble pretrained residual network. Expert Syst. Appl. 203, 117407 (2022)

    Article  Google Scholar 

  11. Dilshad, N., Khan, T., Song, J.: Efficient deep learning framework for fire detection in complex surveillance environment. Comput. Syst. Sci. Eng. 46(1), 749–764 (2023)

    Article  MATH  Google Scholar 

  12. Yar, H., Khan, Z.A., Hussain, T., Baik, S.W.: A modified vision transformer architecture with scratch learning capabilities for effective fire detection. Expert Syst. Appl. 252, 123935 (2024)

    Article  Google Scholar 

  13. Li, S., Yan, Q., Liu, P.: An efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanism. IEEE Trans. Image Process. 29, 8467–8475 (2020)

    Article  MATH  Google Scholar 

  14. Li, M., Zhang, Y., Mu, L., Xin, J., Yu, Z., Liu, H., Xie, G.: Early forest fire detection based on deep learning. In: 2021 3rd International Conference on Industrial Artificial Intelligence (IAI), pp. 1–5 (2021). IEEE

  15. Wang, Y., Han, Y., Tang, Z., Wang, P.: A fast video fire detection of irregular burning feature in fire-flame using in indoor fire sensing robots. IEEE Trans. Instrum. Meas. 71, 1–14 (2022)

    Article  MATH  Google Scholar 

  16. Li, C., Li, G., Song, Y., He, Q., Tian, Z., Xu, H., Liu, X.: Fast forest fire detection and segmentation application for uav-assisted mobile edge computing system. IEEE Internet of Things Journal (2023)

  17. Ahn, Y., Choi, H., Kim, B.S.: Development of early fire detection model for buildings using computer vision-based CCTV. J. Build. Eng. 65, 105647 (2023)

    Article  MATH  Google Scholar 

  18. Ren, D., Zhang, Y., Wang, L., Sun, H., Ren, S., Gu, J.: Fclgyolo: Feature constraint and local guided global feature for fire detection in unmanned aerial vehicle imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2024)

  19. Huang, L., Ding, Z., Zhang, C., Ye, R., Yan, B., Zhou, X., Xu, W., Guo, J.: Yolo-ulnet: Ultra-lightweight network for real-time detection of forest fire on embedded sensing devices. IEEE Sensors Journal (2024)

  20. Ghasemi, Y., Jeong, H., Choi, S.H., Park, K.-B., Lee, J.Y.: Deep learning-based object detection in augmented reality: a systematic review. Comput. Ind. 139, 103661 (2022)

    Article  MATH  Google Scholar 

  21. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: More features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)

  22. Wu, S., Zhang, X., Liu, R., Li, B.: A dataset for fire and smoke object detection. Multimedia Tools Appl. 82(5), 6707–6726 (2023)

    Article  MATH  Google Scholar 

  23. Zhao, L., Zhi, L., Zhao, C., Zheng, W.: Fire-yolo: a small target object detection method for fire inspection. Sustainability 14(9), 4930 (2022)

    Article  MATH  Google Scholar 

  24. Jocher, G.: Ultralytics YOLOv5. https://doi.org/10.5281/zenodo.3908559 . https://github.com/ultralytics/yolov5

  25. Yu, G., Chang, Q., Lv, W., Xu, C., Cui, C., Ji, W., Dang, Q., Deng, K., Wang, G., Du, Y., et al.: Pp-picodet: A better real-time object detector on mobile devices. arXiv preprint arXiv:2111.00902 (2021)

  26. Xu, S., Wang, X., Lv, W., Chang, Q., Cui, C., Deng, K., Wang, G., Dang, Q., Wei, S., Du, Y., et al.: Pp-yoloe: An evolved version of yolo. arXiv preprint arXiv:2203.16250 (2022)

  27. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)

  28. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8. https://github.com/ultralytics/ultralytics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 242210 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xu, L. & Chen, Z. FFD-YOLO: a modified YOLOv8 architecture for forest fire detection. SIViP 19, 265 (2025). https://doi.org/10.1007/s11760-025-03821-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03821-5

Keywords