Skip to main content
Log in

Adaptive nonlinear deep coding using hybrid attention for wireless image transmission

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Recent advances have witnessed that deep learning-based joint source-channel coding (DeepJSCC) methods can achieve noise-resiliency performances for wireless image transmission tasks. Among them, a method named nonlinear transform source-channel coding (NTSCC) achieves superior performance by incorporating the nonlinear transform as a prior to extract the source semantic features and developing a hyperprior-aided codec refinement mechanism. However, the NTSCC framework still cannot achieve adaptive code rates for different channel signal-to-noises (SNRs), which reduces its flexibility and bandwidth efficiency. Additionally, the entropy model in the NTSCC inadequately captures the channel and spatial correlation between latent features, which leads to inaccurate rate transmission. In this paper, we propose an adaptive nonlinear deep coding (ANDC) framework for realizing flexible code rate optimization and improving accuracy of rate transmission. ANDC is realized by a hybrid attention multi-reference entropy model (HA-MREM) that captures the correlation of latent features in channel and spatial to improve the guidance of rate allocation, and adaptive hybrid attention (AHA) module that combines the SNR in both channel and spatial to adapt to different SNRs to flexibly adjust the transmission strategy. Combining these two structures, ANDC enables flexible and efficient image transmission. Simulation results show that the proposed model achieves equal or even better performance results in several metrics compared to the existing NTSCC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gündüz, D., Qin, Z., Aguerri, I.E., Dhillon, H.S., Yang, Z., Yener, A., Wong, K.K., Chae, C.-B.: Beyond transmitting bits: Context, semantics, and task-oriented communications. IEEE J. Sel. Areas Commun. 41(1), 5–41 (2023). https://doi.org/10.1109/JSAC.2022.3223408

    Article  MATH  Google Scholar 

  2. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 586– 595 ( 2018). https://doi.org/10.1109/CVPR.2018.00068

  3. Duan, L., Liu, J., Yang, W., Huang, T., Gao, W.: Video coding for machines: A paradigm of collaborative compression and intelligent analytics. IEEE Trans. Image Process. 29, 8680–8695 (2020). https://doi.org/10.1109/TIP.2020.3016485

    Article  MATH  Google Scholar 

  4. Gormish, M.J., Lee, D., Marcellin, M.W.: Jpeg 2000: overview, architecture, and applications. Proc. 2000 Int. Conf. Image Process. 2, 29–322 (2000). https://doi.org/10.1109/ICIP.2000.899217

    Article  Google Scholar 

  5. Richardson, T., Kudekar, S.: Design of low-density parity check codes for 5g new radio. IEEE Commun. Mag. 56(3), 28–34 (2018). https://doi.org/10.1109/MCOM.2018.1700839

    Article  MATH  Google Scholar 

  6. Weithoffer, S., Nour, C.A., Wehn, N., Douillard, C., Berrou, C.: 25 years of turbo codes: From mb/s to beyond 100 gb/s. In: 2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC), pp. 1– 6 ( 2018). IEEE

  7. Shi, G., Xiao, Y., Li, Y., Xie, X.: From semantic communication to semantic-aware networking: Model, architecture, and open problems. IEEE Commun. Mag. 59(8), 44–50 (2021). https://doi.org/10.1109/MCOM.001.2001239

    Article  MATH  Google Scholar 

  8. Fresia, M., Peréz-Cruz, F., Poor, H.V., Verdú, S.: Joint source and channel coding. IEEE Signal Process. Mag. 27(6), 104–113 (2010). https://doi.org/10.1109/MSP.2010.938080

    Article  MATH  Google Scholar 

  9. Bourtsoulatze, E., Kurka, D.B., Gündüz, D.: Deep joint source-channel coding for wireless image transmission. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774– 4778 ( 2019). https://doi.org/10.1109/ICASSP.2019.8683463

  10. Weng, Z., Qin, Z.: Semantic communication systems for speech transmission. IEEE J. Sel. Areas Commun. 39(8), 2434–2444 (2021). https://doi.org/10.1109/JSAC.2021.3087240

    Article  MATH  Google Scholar 

  11. Farsad, N., Rao, M., Goldsmith, A.: Deep learning for joint source-channel coding of text. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2326– 2330 ( 2018). https://doi.org/10.1109/ICASSP.2018.8461983

  12. Tung, T.-Y., Kurka, D.B., Jankowski, M., Gündüz, D.: Deepjscc-q: Channel input constrained deep joint source-channel coding. In: ICC 2022-IEEE International Conference on Communications, pp. 3880– 3885 ( 2022). IEEE

  13. Dai, J., Wang, S., Tan, K., Si, Z., Qin, X., Niu, K., Zhang, P.: Nonlinear transform source-channel coding for semantic communications. IEEE J. Sel. Areas Commun. 40(8), 2300–2316 (2022)

    Article  MATH  Google Scholar 

  14. Wang, S., Dai, J., Qin, X., Si, Z., Niu, K., Zhang, P.: Improved nonlinear transform source-channel coding to catalyze semantic communications. IEEE J. Select. Topics Signal Process. 17(5), 1022–1037 (2023). https://doi.org/10.1109/JSTSP.2023.3304140

    Article  Google Scholar 

  15. Ballé, J., Chou, P.A., Minnen, D., Singh, S., Johnston, N., Agustsson, E., Hwang, S.J., Toderici, G.: Nonlinear transform coding. IEEE J. Select. Topics Signal Process. 15(2), 339–353 (2021). https://doi.org/10.1109/JSTSP.2020.3034501

    Article  Google Scholar 

  16. Xu, J., Ai, B., Chen, W., Yang, A., Sun, P., Rodrigues, M.: Wireless image transmission using deep source channel coding with attention modules. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2315–2328 (2022). https://doi.org/10.1109/TCSVT.2021.3082521

    Article  Google Scholar 

  17. Jiang, W., Yang, J., Zhai, Y., Ning, P., Gao, F., Wang, R.: Mlic: Multi-reference entropy model for learned image compression. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 7618– 7627 ( 2023)

  18. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992– 10002 ( 2021). https://doi.org/10.1109/ICCV48922.2021.00986

  19. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  20. Zhong, Z., Akutsu, H., Aizawa, K.: Channel-level variable quantization network for deep image compression. arXiv preprint arXiv:2007.12619 (2020)

  21. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13708– 13717 ( 2021). https://doi.org/10.1109/CVPR46437.2021.01350

  22. Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3559– 3568 ( 2021). https://doi.org/10.1109/WACV48630.2021.00360

  23. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7436–7456 (2022). https://doi.org/10.1109/TPAMI.2021.3117837

    Article  MATH  Google Scholar 

  24. Zhang, W., Zhang, H., Ma, H., Shao, H., Wang, N., Leung, V.C.M.: Predictive and adaptive deep coding for wireless image transmission in semantic communication. IEEE Trans. Wireless Commun. 22(8), 5486–5501 (2023). https://doi.org/10.1109/TWC.2023.3234408

    Article  MATH  Google Scholar 

  25. Kokalj-Filipović, S., Soljanin, E.: Suppressing the cliff effect in video reproduction quality. Bell Labs Tech. J. 16(4), 171–185 (2012). https://doi.org/10.1002/bltj.20540

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the project of “Research on the identification of quality and safety risks of typical industrial products based on knowledge graph” (Project No. 262020Y-7506), which is funded by the Central Fundamental Operational Costs Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zeng, Y., Ye, Z. et al. Adaptive nonlinear deep coding using hybrid attention for wireless image transmission. SIViP 19, 251 (2025). https://doi.org/10.1007/s11760-025-03826-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03826-0

Keywords