Skip to main content
Log in

EL-YOLOv8: a lightweight algorithm for efficient detection of pipeline welding defects in X-ray images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

To address the problems of low detection efficiency and false detection of small target defects in the intelligent detection of X-ray image weld defects of industrial pressure pipelines, this paper proposed a more efficient and light EL-YOLOv8 weld defect detection algorithm. Firstly, data augmentation was performed to solve the problem of unclear defects and insufficient data sets. In order to improve the original YOLOv8 model, the FasterNetBlock was combined with the Efficient Multi-Scale Attention (EMA) module to design a lightweight multi-scale feature Faster-EMA module, which was fused with the CSPDarknet53 to Two-stage FPN (C2f) module in the backbone network. The C2f-Faster-EMA module is proposed to realize multi-scale feature object detection and enhance the feature extraction ability. The experimental results show that compared with five mainstream defect detection algorithms such as YOLOv8-Ghost, the proposed model achieves 91.5% mAP@0.5 defect accuracy on the self-developed X-ray welding defect image dataset, which is 2.8% higher than that of the baseline model. Compared with four mainstream lightweight models such as MobileNet V2, the parameter number of the proposed model is 2.5, the FPS reaches 205, and the processing speed is the fastest and the model is the lightest while maintaining a high accuracy, achieving lightweight. At the same time, on the public datasets COCO128 and ImageNet100, the AP@0.50:0.95 of our model is 2.5% higher than that of YOLOv8, which proves that this model also has good generalizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu, M., Xie, J., Hao, J., Zhang, Y., Chen, X., Chen, Y.: A lightweight and accurate recognition framework for signs of X-ray weld images. Comput. Ind. 135, 103559 (2022). https://doi.org/10.1016/j.compind.2021.103559

    Article  MATH  Google Scholar 

  2. Shaloo, M., Schnall, M., Klein, T., Huber, N., Reitinger, B.: A review of non-destructive testing (NDT) techniques for defect detection: application to fusion welding and future wire arc additive manufacturing processes. Materials 15(10), 3697 (2022). https://doi.org/10.3390/ma15103697

    Article  Google Scholar 

  3. Gao, Y., Li, X., Wang, X.V., Wang, L., Gao, L.: A review on recent advances in vision-based defect recognition towards industrial intelligence. J. Manuf. Syst. 62, 753–766 (2022). https://doi.org/10.1016/j.jmsy.2021.05.008

    Article  MATH  Google Scholar 

  4. Fan, D., Hu, Y., Huang, J.: Defect recognition method for X-ray image of pipe weld based on improved convolution neural network. J. Weld. 41(1), 7–11 (2020). https://doi.org/10.12073/j.hjxb.20190703002

    Article  MATH  Google Scholar 

  5. Mery, D., Arteta, C.: Automatic defect recognition in x-ray testing using computer vision. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1026–1035. IEEE (2017). https://doi.org/10.1109/WACV.2017.119

  6. Shao, J., Du, D., Chang, B., Shi, H.: Automatic defect recognition in x-ray testing using computer vision. In: Automatic Weld Defect Detection Based on Potential Defect Tracking in Real-Time Radiographic Image Sequence (2012). https://doi.org/10.1016/j.ndteint.2011.10.008

  7. Sun, J., Li, C., Wu, X.J., Palade, V., Fang, W.: An effective method of weld defect detection and classification based on machine vision. IEEE Trans. Industr. Inf. 15(12), 6322–6333 (2019). https://doi.org/10.1109/TII.2019.2896357

    Article  MATH  Google Scholar 

  8. Malarvel, M., Singh, H.: An autonomous technique for weld defects detection and classification using multi-class support vector machine in X-radiography image. Optik 231, 166342 (2021). https://doi.org/10.1016/j.ijleo.2021.166342

    Article  Google Scholar 

  9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Access 8(2020), 203700–203711 (2014). https://doi.org/10.1109/CVPR.2014.81

    Article  Google Scholar 

  10. Zhao, W., Xu, M., Cheng, X., Zhao, Z.: An insulator in transmission lines recognition and fault detection model based on improved faster RCNN. IEEE Trans. Instrum. Meas. 70, 1–8 (2021). https://doi.org/10.1109/TIM.2021.3112227

    Article  MATH  Google Scholar 

  11. Liu, W., Shan, S., Chen, H., Wang, R., Sun, J., Zhou, Z.: X-ray weld defect detection based on AF-RCNN. Weld. World 66(6), 1165–1177 (2022). https://doi.org/10.1007/s40194-022-01281-w

    Article  MATH  Google Scholar 

  12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779-788 (2016). https://doi.org/10.1109/CVPR.2016.91

  13. Zhang, R., Wen, C.: SOD-YOLO: a small target defect detection algorithm for wind turbine blades based on improved YOLOv5. Adv. Theory Simul. 5(7), 2100631 (2022). https://doi.org/10.1002/adts.202100631

    Article  Google Scholar 

  14. Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Kwon, Y., Michael, K., Fang, J., Yifu, Z., Wong, C., Montes, D., et al.: ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation. Zenodo (2022)

  15. Zhou, F., Zhao, H., Nie, Z.: Safety helmet detection based on YOLOv5. In: 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), pp. 6-11. IEEE (2021). https://doi.org/10.1109/ICPECA51329.2021.9362711

  16. Liu, M., Chen, Y., Xie, J., He, L., Zhang, Y.: LF-YOLO: a lighter and faster yolo for weld defect detection of X-ray image. IEEE Sens. J. 23(7), 7430–7439 (2023). https://doi.org/10.1109/JSEN.2023.3247006

    Article  MATH  Google Scholar 

  17. Yang, J., Fu, B., Zeng, J., Wu, S.: YOLO-Xweld: efficiently detecting pipeline welding defects in X-ray images for constrained environments. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2022). https://doi.org/10.1109/IJCNN55064.2022.9892765

  18. Song, L., Wang, S., Li, Y., Zhang, Q., Liu, M.: Improved YOLO-based laser stripe region extraction method for welding robots. J. Electron. Imaging 33(1), 013038–013038 (2024). https://doi.org/10.1117/1.JEI.33.1.013038

    Article  MATH  Google Scholar 

  19. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023). https://doi.org/10.1109/CVPR52729.2023.00721

  20. Ruiz-Ponce, P., Ortiz-Perez, D., Garcia-Rodriguez, J., Kiefer, B.: Poseidon: a data augmentation tool for small object detection datasets in maritime environments. Sensors 23(7), 3691 (2023). https://doi.org/10.3390/s23073691

    Article  Google Scholar 

  21. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Carrasco, M.: GDXray: the database of X-ray images for nondestructive testing. J. Nondestr. Eval. 34(4), 42 (2015). https://doi.org/10.1007/s10921-015-0315-7

    Article  Google Scholar 

  22. Kaur, R., Singh, S.: A comprehensive review of object detection with deep learning. Digital Signal Process. 132, 103812 (2023). https://doi.org/10.1016/j.dsp.2022.103812

    Article  MATH  Google Scholar 

  23. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. Proc. IEEE (2023). https://doi.org/10.1109/JPROC.2023.3238524

    Article  MATH  Google Scholar 

  24. Menezes, A.G., de Moura, G., Alves, C., de Carvalho, A.C.: Continual object detection: a review of definitions, strategies, and challenges. Neural Netw. (2023). https://doi.org/10.1016/j.neunet.2023.01.041

    Article  MATH  Google Scholar 

  25. Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., Ren, Q.: Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles (2022). arXiv:2206.02424, https://doi.org/10.1007/s11554-024-01436-6

  26. Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L., Zhang, L.: Dynamic head: unifying object detection heads with attentions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7373–7382 (2021). https://doi.org/10.1109/CVPR46437.2021.00729

  27. Chen, J., Kao, S.H., He, H., Zhuo, W., Wen, S., Lee, C.H., Chan, S.H.G.: Run, Don’t walk: chasing higher FLOPS for faster neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12021–12031 (2023). https://doi.org/10.1109/CVPR52729.2023.01157

  28. Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., Huang, Z.: Efficient multi-scale attention module with cross-spatial learning. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023). https://doi.org/10.1109/ICASSP49357.2023.10096516

  29. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

  30. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L.: Microsoft coco: common objects in context. In: Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13, pp. 740–755. Springer (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  31. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). Ieee. https://doi.org/10.1109/CVPR.2009.5206848

  32. Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S., Dollár, P., Zitnick, C.L.: Microsoft coco captions: data collection and evaluation server (2015). arXiv:1504.00325, https://doi.org/10.1109/CVPR.2009.5206848

Download references

Funding

This study is supported by the National Natural Science Foundation of China (62206094); Public Welfare Applied Research Project in Huzhou, Zhejiang Province (2022GZ09).

Author information

Authors and Affiliations

Authors

Contributions

The contribution of the authors to the article is equal. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuhao Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Fang, Y., Feng, J. et al. EL-YOLOv8: a lightweight algorithm for efficient detection of pipeline welding defects in X-ray images. SIViP 19, 308 (2025). https://doi.org/10.1007/s11760-025-03877-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03877-3

Keywords