Skip to main content
Log in

Sigmoid-enhanced robust adaptive beamforming for sensor arrays

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel robust beamforming method for sensor arrays is presented. Unlike conventional methods, this novel technique employs a normalised sigmoid function-based adaptation to dynamically adjust the step size. Due to this adaptive mechanism, the algorithm can respond to changes in the signal environment without manually adjusting the parameters, which can be difficult and time-consuming. The startling efficiency of our suggested method while maintaining a reasonably low computational cost is one of its outstanding benefits. This is made possible by the straightforward implementation and intrinsic parallelizability of the sigmoid function-based adaptation, which further reduces computing complexity. Furthermore, the proposed sigmoid function-based algorithm creates a potent technique that improves overall performance and adaptability. The proposed algorithm is superior to existing approaches in terms of convergence speed, tracking ability, and interference suppression, as shown by rigorous simulations and in-depth comparisons with them. The proposed method offers significant promise for a variety of real-world scenarios by providing a reliable and effective remedy to the drawbacks of conventional beamforming algorithms, thereby advancing the science of sensor array beamforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    MATH  Google Scholar 

  2. Widrow, B., McCool, J.M., Larimore, M.G., Johnson, C.R.: Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc. IEEE 64, 1151–1162 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Widrow, B., Glover, J.R., McCool, J.M., Kaunitz, J., Williams, C.S., Hearn, R.H., et al.: Adaptive noise cancelling: principles and applications. Proc. IEEE 63, 1692–1716 (1975)

    Google Scholar 

  4. Widrow, B., Stearns, S.D.: Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, NJ (1985)

    MATH  Google Scholar 

  5. Sandhi, M.M., Berkley, D.A.: Silencing echoes on the telephone network. Proc. IEEE 68, 948–963 (1980)

    MATH  Google Scholar 

  6. Horowitz, L.L., Senne, K.D.: Performance advantage of complex LMS for controlling narrow-band adaptive arrays. IEEE Trans. Acoust., Speech, Sig. Process. ASSP–29, 722–736 (1981)

    MATH  Google Scholar 

  7. Macchi, O., Eweda, E.: Second-order convergence analysis of stochastic adaptive linear filtering. IEEE Trans. Automat. Contr. AC–28, 76–85 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Feuer, A., Weinstein, E.: Convergence analysis of LMS filters with uncorrelated Gaussian data. IEEE Trans. Acoust., Speech, Sig. Process. ASSP–33, 222–230 (1985)

    MATH  Google Scholar 

  9. Eweda, E., Macchi, O.: Tracking error bounds of adaptive nonstationary filtering. Automatica 21, 293–302 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Slock, D.T.M.: On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans. Signal Processing 41, 2811–2825 (1993)

    MATH  Google Scholar 

  11. Nascimento, V. H.: Improving the initial convergence of adaptive filters: Variable-length LMS algorithms, In: Proceedings of 14th International Conference on Digital Signal Processing, Santorini, Greece, pp. 667-670 (2007)

  12. Lobato, E.M., Tobias, O.J., Seara, R.: Stochastic modeling of the transform-domain LMS algorithm for correlated Gaussian data. IEEE Trans. Signal Processing 56, 1840–1852 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Górriz, J.M., Ramírez, J., Cruces-Alvarez, S., Erdogmus, D., Puntonet, C.G., Lang, E.W.: Speech enhancement in discontinuous transmission systems using the constrained-stability least-mean-squares algorithm. J. Acoust. Society Amer. 124(6), 3669–3683 (2008)

    MATH  Google Scholar 

  14. Wee-Peng, A., Farhang-Boroujeny, B.: A new class of gradient adaptive step-size LMS algorithms. IEEE Trans. Signal Processing 49, 805–810 (2001)

    MATH  Google Scholar 

  15. Jalal, B., Yang, X., Liu, Q., Long, T., Sarkar, T.K.: Fast and robust variable-step-size LMS algorithm for adaptive beamforming. IEEE Antennas Wirel. Propag. Lett. 19(7), 1206–1210 (2020)

    MATH  Google Scholar 

  16. Eweda, E., Macchi, O.: Convergence of the RLS and LMS adaptive filters. IEEE Trans. Circuits Syst. CAS–34, 799–803 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Elisei-Iliescu, C., Paleologu, C., Benesty, J., Stanciu, C., Anghel, C., Ciochină, S.: Recursive Least-Squares Algorithms for the Identification of Low-Rank Systems. IEEE/ACM Trans. Audio, Speech, Lang. Process. 27(5), 903–918 (2019)

    MATH  Google Scholar 

  18. Zakharov, Y.V., White, G.P., Liu, J.: Low-complexity RLS algorithms using dichotomous coordinate descent iterations. IEEE Trans. Signal Process. 56, 3150–3161 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Yuxin Chen, T., Le-Ngoc, B., Champagne, Xu, C.: Recursive least squares constant modulus algorithm for blind adaptive array. IEEE Trans. Signal Process. 52(5), 1452–1456 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Tsakiris, M.C., Lopes, C.G., Nascimento, V.H.: An array recursive least-squares algorithm with generic nonfading regularization matrix. IEEE Signal Process. Lett. 17(12), 1001–1004 (2010)

    MATH  Google Scholar 

  21. Godara, L.C.: Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proc. IEEE 85(8), 1195–1245 (1997)

    MATH  Google Scholar 

  22. Banerjee, S., Chau, P.M.: Recursive least squares problem implementation on a generalized interconnection of DSP processors. IEEE Int. Conf. Acoust., Speech, Signal Process., Minneap., MN, USA 3, 575–578 (1993). https://doi.org/10.1109/ICASSP.1993.319563

    Article  MATH  Google Scholar 

  23. Djigan, V.: Fast RLS algorithms in Combined Adaptive Array and Fractionally-Spaced Feed-Forward, Feed-Backward Equalizer, In: IEEE East-West Design & Test Symposium (EWDTS). Varna, Bulgaria Vol. 2020, pp. 1–6 (2020)

  24. Harris, R.W., Chabries, D.M., Bishop, F.A.: A variable step (VS) adaptive filter algorithm. IEEE Trans. Acoust., Speech, Signal Process. ASSP–34, 309–316 (1986)

    MATH  Google Scholar 

  25. Bershad, N.J.: On the optimum gain parameter in LMS adaptation. IEEE Trans. Acoust., Speech, Signal Process. ASSP–35, 1065–1068 (1987)

    MATH  Google Scholar 

  26. Kwong, R., Johnston, E.W.: A variable step size LMS algorithm. IEEE Trans. Signal Process. 40, 1633–1642 (1992)

    MATH  Google Scholar 

  27. Aboulnasr, T., Mayyas, K.: A robust variable step-size Ims-type algorithm: analysis and simulations. IEEE Trans. Signal Process. 45, 631–639 (1997)

    MATH  Google Scholar 

  28. Shengkui, Z., Zhihong, M., Suiyang, K.: A fast variable step-size LMS algorithm with system identification, In: Proceedings of 2nd IEEE conference on industrial electronics and applications, pp. 2340-2345, (2007)

  29. Huang, H.C., Lee, J.: A new variable step-size NLMS algorithm and its performance analysis. IEEE Trans. Signal Process. 60(4), 2055–2060 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Shi, Y., Huang, L., Qian, C., So, H.C.: Shrinkage linear and widely linear complex-valued least mean squares algorithms for adaptive beamforming. IEEE Trans. Signal Process. 63(1), 119–131 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Srar, J.A., Chung, K.S., Mansour, A.: Adaptive array beamforming using a combined LMS-LMS algorithm. IEEE Trans. Antennas Propag. 58(11), 545–3557 (2010)

    MATH  Google Scholar 

  32. Jalal, B., Yang, X., Liu, Q., Long, T., Sarkar, T.K.: Fast and robust variable-step-size LMS algorithm for adaptive beamforming. IEEE Antennas Wirel. Propag. Lett. 19(7), 1206–1210 (2020)

    MATH  Google Scholar 

  33. D, V., Jalal, B.: A fast adaptive beamforming technique for efficient direction-of-arrival estimation. IEEE Sens. J. 22(23), 23109–23116 (2022). (1)

    MATH  Google Scholar 

  34. Alagirisamy, M., Singh, M.: Efficient coherent direction-of-arrival estimation and realization using digital signal processor. IEEE Trans. Antennas Propag. 68(9), 6675–6682 (2020)

    MATH  Google Scholar 

  35. He, J., Ting, S., V, D.: Simultaneous interference localization and array calibration for robust adaptive beamforming with partly calibrated arrays. IEEE Trans. Aerosp. Electron. Syst. 57(5), 2850–2863 (2021)

    MATH  Google Scholar 

  36. He, J., D, V.: 3-D near-field source localization using a spatially spread acoustic vector sensor. IEEE Trans. Aerosp. Electron. Syst. 58(1), 180–188 (2022)

    MATH  Google Scholar 

  37. D, V.: A new approach to achieve a trade-off between direction-of-arrival estimation and computational complexity. IEEE Commun. Lett. 25(4), 1183–1186 (2021)

    MATH  Google Scholar 

  38. Pan, H., Koyuncu, E., Cetin, A. E.: Robust Array Signal Processing Using L1-Kernel-Based Principal Component Analysis, In: Proceedings of the 2023 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pp. 113–118, IEEE, (2023)

Download references

Acknowledgements

We would like to express our sincere gratitude to the editors and anonymous reviewers for their valuable time. We appreciate their expertise and dedication in reviewing our manuscript, and we are grateful for their contributions to the advancement of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerendra Dakulagi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakulagi, V., Yeap, K.H. & Khandare, A. Sigmoid-enhanced robust adaptive beamforming for sensor arrays. SIViP 19, 304 (2025). https://doi.org/10.1007/s11760-025-03886-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03886-2

Keywords