Skip to main content
Log in

Study on VMD decomposition and denoising of spectral signals based on improved CPO algorithm

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In order to avoid that the spectrometer is interfered by matrix elements, stray light and dark current in the spectral signal acquisition, which generates noise and affects the signal accuracy, a spectral denoising method based on the improved crested porcupine optimizer (ICPO) optimized variational mode decomposition (VMD) is proposed in this study. The method first uses ICPO to determine the optimal decomposition parameters of the VMD, then brings the optimal parameters into the VMD decomposition and extracts high-quality modal components for reconstruction through sample entropy to obtain the denoised spectral signal. The experimental results show that the method can effectively remove the noise in the spectral data, and the noise reduction performance is better than the other methods, providing a reliable basis for analyzing spectral signals. Meanwhile, to explore the good effect of improving the ICPO algorithm, other optimization algorithms are introduced for comparative analysis, and the results show that the optimization effect of the ICPO algorithm in the CEC2022 test set is better than that of other comparison algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility

The code used in the study is available from the corresponding author.

References

  1. Balaram, V.: Microwave plasma atomic emission spectrometry (mp-aes) and its applications-a critical review. Microchem. J. 159, 105483 (2020)

    Article  MATH  Google Scholar 

  2. Asfaw, A., Beauchemin, D.: Improvement of the capabilities of inductively coupled plasma optical emission spectrometry by replacing the desolvation system of an ultrasonic nebulization system with a pre-evaporation tube. Spectrochim. Acta, Part B 65(5), 376–384 (2010)

    Article  MATH  Google Scholar 

  3. Feng, Z., Liang, M.: Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation. Renew. Energy 47, 112–126 (2012)

    Article  MATH  Google Scholar 

  4. Wang, D., Miao, Q.: Rolling element bearing fault detection using an improved combination of hilbert and wavelet transforms. J. Mech. Sci. Technol. 23(12), 3292–3301 (2009). https://doi.org/10.1007/s12206-009-0807-4

    Article  MATH  Google Scholar 

  5. Li, Z., Feng, Z.: A load identification method based on wavelet multi-resolution analysis. J. Sound Vib. 333(2), 381–391 (2014). https://doi.org/10.1016/j.jsv.2013.09.026

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, Y., Xu, G.: Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis. Mech. Sys. Signal Process. 54–55, 259–276 (2015). https://doi.org/10.1016/j.ymssp.2014.09.002

    Article  MATH  Google Scholar 

  7. Cao, H., Lei, Y., 10.1016/j.ijmachtools.2013.02.007: Chatter identification in end milling process using wavelet packets and hilbert-huang transform. Int. J. Mach. Tools Manuf. 69, 11–19 (2013)

    Article  Google Scholar 

  8. Lei, Yaguo: Fault diagnosis of rotating machinery based on empirical mode decomposition. In: Yan, Ruqiang, Chen, Xuefeng, Mukhopadhyay, Subhas Chandra (eds.) Structural health monitoring, pp. 259–292. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-56126-4_10

    Chapter  MATH  Google Scholar 

  9. Liu, Z., He, Z.: A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery. ISA Trans. 61, 211–220 (2016). https://doi.org/10.1016/j.isatra.2015.12.009

    Article  MATH  Google Scholar 

  10. Wang, L., Liu, Z.: Time-frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 103(MAR.15), 60–75 (2018). https://doi.org/10.1016/j.ymssp.2017.09.042

    Article  MATH  Google Scholar 

  11. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009). https://doi.org/10.1142/S1793536909000047

    Article  MATH  Google Scholar 

  12. Yeh, J.R., Shieh, J.S.: Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 02(02), 135–156 (2010). https://doi.org/10.1142/S1793536910000422

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, X., Miao, Q.: An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis. ISA Trans. 71, 206–214 (2017). https://doi.org/10.1016/j.isatra.2017.08.009

    Article  MATH  Google Scholar 

  14. Lei, Y., He, Z.: Application of the eemd method to rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 23(4), 1327–1338 (2009). https://doi.org/10.1016/j.ymssp.2008.11.005

    Article  MATH  Google Scholar 

  15. Feng, Z., Liang, M.: Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mech. Sys. Signal Process. 38(1), 165–205 (2013). https://doi.org/10.1016/j.ymssp.2013.01.017

    Article  MATH  Google Scholar 

  16. Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Y., Markert, R.: Filter bank property of variational mode decomposition and its applications. Signal Process. 120, 509–521 (2016). https://doi.org/10.1016/j.sigpro.2015.09.041

    Article  MATH  Google Scholar 

  18. Xia, Y., Li, K.: Vmd based wavelet hybrid denoising and improved fbcca algorithm: a new technique for wearable ssvep recognition. SIViP 18(8), 6157–6172 (2024)

    Article  MATH  Google Scholar 

  19. Ashraf, H., Shafiq, U.: Variational mode decomposition for surface and intramuscular emg signal denoising. Biomed. Signal Process. Control 82, 104560 (2023). https://doi.org/10.1016/j.bspc.2022.104560

    Article  MATH  Google Scholar 

  20. Bian, X., Shi, Z.: Variational mode decomposition for raman spectral denoising. Molecules 28(17) (2023) https://doi.org/10.3390/molecules28176406

  21. Wang, Y., Markert, R.: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Process. 60, 243–251 (2015). https://doi.org/10.1016/j.ymssp.2015.02.020

    Article  MATH  Google Scholar 

  22. Yang, W., Peng, Z.: Superiorities of variational mode decomposition over empirical mode decomposition particularly in time-frequency feature extraction and wind turbine condition monitoring. IET Renew. Power Gener. 11(4), 443–452 (2017). https://doi.org/10.1049/iet-rpg.2016.0088

    Article  MATH  Google Scholar 

  23. Yang, Y., Jiang, D.: Casing vibration fault diagnosis based on variational mode decomposition, local linear embedding, and support vector machine. Shock. Vib. 2017(1), 5963239 (2017). https://doi.org/10.1155/2017/5963239

    Article  Google Scholar 

  24. Li, Z., Jiang, Y.: Multi-dimensional variational mode decomposition for bearing-crack detection in wind turbines with large driving-speed variations. Renew. Energy 116, 55–73 (2018). https://doi.org/10.1016/j.renene.2016.12.013

    Article  MATH  Google Scholar 

  25. Zhang, M., Jiang, Z.: Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump. Mech. Syst. Signal Process. 93(Sep.), 460–493 (2017). https://doi.org/10.1016/j.ymssp.2017.02.013

    Article  MATH  Google Scholar 

  26. Yan, X., Jia, M.: Compound fault diagnosis of rotating machinery based on ovmd and a 1.5-dimension envelope spectrum. Meas. Sci. Technol. 27(7), 075002 (2016). https://doi.org/10.1088/0957-0233/27/7/075002

    Article  MATH  Google Scholar 

  27. Yi, C., Lv, Y., Dang, Z.: A fault diagnosis scheme for rolling bearing based on particle swarm optimization in variational mode decomposition. Shock. Vib. 2016(1), 9372691 (2016). https://doi.org/10.1155/2016/9372691

  28. Abdel-Basset, M., Mohamed, R., Abouhawwash, M.: Crested porcupine optimizer: A new nature-inspired metaheuristic. Knowl.-Based Syst. 284, 111257 (2024). https://doi.org/10.1016/j.knosys.2023.111257

    Article  MATH  Google Scholar 

  29. Taleb, S.M., Meraihi, Y.: Efficient coronavirus herd immunity optimizer for the uav base stations placement problem. Modelling and Implementation of Complex Systems, 292–305 (2022). Springer

  30. Clément, F., Doerr, C., Paquete, L.: Heuristic approaches to obtain low-discrepancy point sets via subset selection. J. Complex. 83, 101852 (2024). https://doi.org/10.1016/j.jco.2024.101852

    Article  MathSciNet  MATH  Google Scholar 

  31. Kahraman, H.T., Aras, S.: Fitness-distance balance (fdb): A new selection method for meta-heuristic search algorithms. Knowl.-Based Syst. 190, 105169 (2020). https://doi.org/10.1016/j.knosys.2019.105169

    Article  MATH  Google Scholar 

  32. Chopra, N., Ansari, M.M.: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 198, 116924 (2022). https://doi.org/10.1016/j.eswa.2022.116924

    Article  Google Scholar 

  33. Hamad, R.K., Rashid, T.A.: Goose algorithm: A powerful optimization tool for real-world engineering challenges and beyond. Evolving systems, 1–26 (2024) https://doi.org/10.1007/s12530-023-09553-6

  34. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  MATH  Google Scholar 

  35. Benesty, J., Chen, J.: On the importance of the pearson correlation coefficient in noise reduction. IEEE Trans. Audio Speech Lang. Process. 16(4), 757–765 (2008)

    Article  MATH  Google Scholar 

  36. Ghosh, S.K., Tripathy, R.K.: Evaluation of performance metrics and denoising of pcg signal using wavelet based decomposition. In: 2020 IEEE 17th India council international conference (INDICON), pp. 1–6 (2020). IEEE

  37. Zhang, J., Qian, K.: Fbg strain monitoring data denoising in wind turbine blades based on parameter-optimized variational mode decomposition method. Opt. Fiber Technol. 81, 103527 (2023). https://doi.org/10.1016/j.yofte.2023.103527

    Article  MATH  Google Scholar 

  38. Lv, L.L.: Evaluation system of wavelet denoising effect of multispectral lidar. Hyd. Surv. Chart. 36(04), 72–75 (2016). (In Chinese)

    MATH  Google Scholar 

Download references

Funding

The Forestry Bureau of Xianfeng County, Enshi, China, supported this research project (Grant numbers: XF2024070301DN).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the conceptualization and design of the study. DQ and JC prepared the materials, collected the data, and analyzed the data. QZ wrote the manuscript, which all authors reviewed.

Corresponding author

Correspondence to Junyi Chen.

Ethics declarations

Conflict of interest

All author declares that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Qiu, D., Chen, J. et al. Study on VMD decomposition and denoising of spectral signals based on improved CPO algorithm. SIViP 19, 341 (2025). https://doi.org/10.1007/s11760-025-03892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03892-4

Keywords