Skip to main content
Log in

Semantic segmentation and deep CNN learning vision-based crack recognition system for concrete surfaces: development and implementation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The enhancement of machine learning (ML) models relies heavily on the volume and integrity of data, emphasizing the importance of efficient data collection and rigorous ground-truth labeling. While deep learning, particularly its subset convolutional neural network (CNN), has shown promise in crack detection, there remains a need for sophisticated algorithms to identify structural defects accurately. This study presents a novel deep CNN model tailored for the binary classification of concrete surfaces, addressing a significant need in infrastructure engineering. The deep CNN model was developed using a comprehensive dataset (40,000 images each measuring 227 × 227 pixels). Various metrics, including precision, sensitivity, binary accuracy, and F1 score, were utilized to evaluate the model's performance. Additionally, the model's generalization capability was assessed by testing its proficiency in accurately classifying unseen data. The study demonstrates that the model’s predictive performance improves with additional epochs, indicating enhanced learning over learning cycles. Validation metrics suggest potential generalization capability despite slight accuracy declines, showcasing the model’s robustness in accurately classifying positive instances. The findings reveal significant advancements in deep CNN models for concrete material classification, surpassing previous comparable models. Employing CNN models holds promising outcomes for quality control and repair processes in infrastructure engineering applications. Future research directions include exploring the application of the deep CNN model to classify alternative materials and assessing its generalization capability using larger and more diverse datasets. Overall, this study contributes to the advancement of ML techniques in infrastructure engineering, with implications for optimizing material classification processes and enhancing infrastructure repair outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Deng, J., Singh, A., Zhou, Y., Lu, Y., Lee, V.C.-S.: Review on computer vision-based crack detection and quantification methodologies for civil structures. Constr. Build. Mater. 356, 129238 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129238

    Article  Google Scholar 

  2. Hsieh, Y.-A., Tsai, Y.J., Asce, M.: Machine learning for crack detection: review and model performance comparison. J. Comput. Civil Eng. (2020). https://doi.org/10.1061/(ASCE)

    Article  MATH  Google Scholar 

  3. Baduge, S.K., Thilakarathna, S., Perera, J.S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., Mendis, P.: Artificial intelligence and smart vision for building and construction 40: Machine and deep learning methods and applications. Autom. Constr. 141, 104440 (2022). https://doi.org/10.1016/j.autcon.2022.104440

    Article  Google Scholar 

  4. Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., Zhang, L.: Deep learning in environmental remote sensing: achievements and challenges. Remote Sens. Environ. 241, 111716 (2020). https://doi.org/10.1016/j.rse.2020.111716

    Article  MATH  Google Scholar 

  5. Mohan, A., Singh, A.K., Kumar, B., Dwivedi, R.: Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. (2021). https://doi.org/10.1002/ett.3998

    Article  MATH  Google Scholar 

  6. Sarkar, K., Shiuly, A., Dhal, K.G.: Revolutionizing concrete analysis: an in-depth survey of AI-powered insights with image-centric approaches on comprehensive quality control, advanced crack detection and concrete property exploration. Constr. Build. Mater. 411, 134212 (2024). https://doi.org/10.1016/j.conbuildmat.2023.134212

    Article  MATH  Google Scholar 

  7. Ali, R., Chuah, J.H., Talip, M.S.A., Mokhtar, N., Shoaib, M.A.: Structural crack detection using deep convolutional neural networks. Autom. Constr. 133, 103989 (2022). https://doi.org/10.1016/j.autcon.2021.103989

    Article  Google Scholar 

  8. Wang, L.: Automatic detection of concrete cracks from images using Adam-SqueezeNet deep learning model. Frattura ed Integrità Strutturale. 17, 289–299 (2023). https://doi.org/10.3221/IGF-ESIS.65.19

    Article  MATH  Google Scholar 

  9. Manjunatha, P., Masri, S.F., Nakano, A., Wellford, L.C.: CrackDenseLinkNet: a deep convolutional neural network for semantic segmentation of cracks on concrete surface images. Struct. Health Monit. 23, 796–817 (2024). https://doi.org/10.1177/14759217231173305

    Article  Google Scholar 

  10. Han, X., Zheng, J., Chen, L., Chen, Q., Huang, X.: Semantic segmentation model for concrete cracks based on parallel Swin-CNNs framework. Struct. Health Monit. (2024). https://doi.org/10.1177/14759217241228532

    Article  MATH  Google Scholar 

  11. Kim, J.T., Ta, Q.B., Dang, N.L., Kim, Y.C., Kam, H.D.: Semantic crack-image identification framework for steel structures using atrous convolution-based Deeplabv3+ Network. Smart Struct. Syst. Int. J. 30, 17–34 (2022)

    MATH  Google Scholar 

  12. Liu, J., Zhao, Z., Lv, C., Ding, Y., Chang, H., Xie, Q.: An image enhancement algorithm to improve road tunnel crack transfer detection. Constr. Build. Mater. 348, 128583 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128583

    Article  Google Scholar 

  13. Wang, X., Wang, T., Li, J.: Advanced crack detection and quantification strategy based on CLAHE enhanced DeepLabv3+. Eng. Appl. Artif. Intell. 126, 106880 (2023). https://doi.org/10.1016/j.engappai.2023.106880

    Article  MATH  Google Scholar 

  14. Li, J., Lu, X., Zhang, P., Li, Q.: Intelligent detection method for concrete dam surface cracks based on two-stage transfer learning. Water (Basel). 15, 2082 (2023). https://doi.org/10.3390/w15112082

    Article  MATH  Google Scholar 

  15. Savino, P., Tondolo, F.: Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning. J. Civ. Struct. Health Monit. 13, 35–48 (2023). https://doi.org/10.1007/s13349-022-00618-9

    Article  Google Scholar 

  16. Liu, Y., Gao, M.: Detecting cracks in concrete structures with the baseline model of the visual characteristics of images. Comp. Aided Civil and Infrastruct. Eng. 37, 1891–1913 (2022). https://doi.org/10.1111/mice.12874

    Article  MATH  Google Scholar 

  17. Arafin, P., Billah, A.M., Issa, A.: Deep learning-based concrete defects classification and detection using semantic segmentation. Struct. Health Monit. 23, 383–409 (2024). https://doi.org/10.1177/14759217231168212

    Article  Google Scholar 

  18. Chen, Y., Zhu, Z., Lin, Z., Zhou, Y.: Building surface crack detection using deep learning technology. Buildings 13, 1814 (2023). https://doi.org/10.3390/buildings13071814

    Article  MATH  Google Scholar 

  19. Li, J., Tian, Y., Chen, J., Wang, H.: Rock crack recognition technology based on deep learning. Sensors. 23, 5421 (2023). https://doi.org/10.3390/s23125421

    Article  MATH  Google Scholar 

  20. Mousavi, M., Bakhshi, A.: Optimized U-shape convolutional neural network with a novel training strategy for segmentation of concrete cracks. Struct. Health Monit. 22, 1211–1224 (2023). https://doi.org/10.1177/14759217221105647

    Article  MATH  Google Scholar 

  21. Cha, Y.-J., Ali, R., Lewis, J., Büyükӧztürk, O.: Deep learning-based structural health monitoring. Autom. Constr. 161, 105328 (2024). https://doi.org/10.1016/j.autcon.2024.105328

    Article  Google Scholar 

  22. Jakubowski, J., Tomczak, K.: Deep learning metasensor for crack-width assessment and self-healing evaluation in concrete. Constr. Build. Mater. 422, 135768 (2024). https://doi.org/10.1016/j.conbuildmat.2024.135768

    Article  Google Scholar 

  23. Lee, H., Yoo, J.: Fast attention CNN for fine-grained crack segmentation. Sensors. 23, 2244 (2023). https://doi.org/10.3390/s23042244

    Article  MATH  Google Scholar 

  24. Kumar, P., Sharma, A., Kota, S.R.: Automatic multiclass instance segmentation of concrete damage using deep learning model. IEEE Access. 9, 90330–90345 (2021). https://doi.org/10.1109/ACCESS.2021.3090961

    Article  MATH  Google Scholar 

  25. Wang, J., Liu, Y., Nie, X., Mo, Y.L.: Deep convolutional neural networks for semantic segmentation of cracks. Struct. Control Health Monit. (2022). https://doi.org/10.1002/stc.2850

    Article  MATH  Google Scholar 

  26. Hou, Y., Liu, S., Cao, D., Peng, B., Liu, Z., Sun, W., Chen, N.: A deep learning method for pavement crack identification based on limited field images. IEEE Trans. Intell. Transp. Syst. 23, 22156–22165 (2022). https://doi.org/10.1109/TITS.2022.3160524

    Article  MATH  Google Scholar 

  27. Liu, G., Ding, W., Shu, J., Strauss, A., Duan, Y.: Two-stream boundary-aware neural network for concrete crack segmentation and quantification. Struct. Control. Health Monit. 2023, 1–17 (2023). https://doi.org/10.1155/2023/3301106

    Article  Google Scholar 

  28. Kaseko, M.S., Ritchie, S.G.: A neural network-based methodology for pavement crack detection and classification. Transp Res Part C Emerg Technol. 1, 275–291 (1993). https://doi.org/10.1016/0968-090X(93)90002-W

    Article  MATH  Google Scholar 

  29. Li, G., Zhao, X., Du, K., Ru, F., Zhang, Y.: Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine. Autom. Constr. 78, 51–61 (2017). https://doi.org/10.1016/j.autcon.2017.01.019

    Article  MATH  Google Scholar 

  30. Fan, C.: Detection of multidamage to reinforced concrete using support vector machine-based clustering from digital images. Struct. Control Health Monit. (2021). https://doi.org/10.1002/stc.2841

    Article  MATH  Google Scholar 

  31. Hoang, N.-D., Nguyen, Q.-L., Tien Bui, D.: Image processing-based classification of asphalt pavement cracks using support vector machine optimized by artificial bee colony. J. Comput. Civil Eng. (2018). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000781

    Article  MATH  Google Scholar 

  32. Li, S., Zhao, X.: Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Adv. Civil Eng. 2019, 1–12 (2019). https://doi.org/10.1155/2019/6520620

    Article  MATH  Google Scholar 

  33. Kim, J.J., Kim, A.-R., Lee, S.-W.: Artificial neural network-based automated crack detection and analysis for the inspection of concrete structures. Appl. Sci. 10, 8105 (2020). https://doi.org/10.3390/app10228105

    Article  MATH  Google Scholar 

  34. Dorafshan, S., Thomas, R.J., Maguire, M.: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr. Build. Mater. 186, 1031–1045 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.011

    Article  MATH  Google Scholar 

  35. Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17, 3434–3445 (2016). https://doi.org/10.1109/TITS.2016.2552248

    Article  Google Scholar 

  36. Cheng, H.D., Wang, J., Hu, Y.G., Glazier, C., Shi, X.J., Chen, X.W.: Novel approach to pavement cracking detection based on neural network. Transp. Res. Record J. Transp. Res. Board. 1764, 119–127 (2001). https://doi.org/10.3141/1764-13

    Article  MATH  Google Scholar 

  37. Kheradmandi, N., Mehranfar, V.: A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Constr. Build. Mater. 321, 126162 (2022). https://doi.org/10.1016/j.conbuildmat.2021.126162

    Article  MATH  Google Scholar 

  38. Dais, D., Bal, İE., Smyrou, E., Sarhosis, V.: Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Autom. Constr. 125, 103606 (2021). https://doi.org/10.1016/j.autcon.2021.103606

    Article  MATH  Google Scholar 

  39. Chen, L., Chen, W., Wang, L., Zhai, C., Hu, X., Sun, L., Tian, Y., Huang, X., Jiang, L.: Convolutional neural networks (CNNs)-based multi-category damage detection and recognition of high-speed rail (HSR) reinforced concrete (RC) bridges using test images. Eng. Struct. 276, 115306 (2023). https://doi.org/10.1016/j.engstruct.2022.115306

    Article  MATH  Google Scholar 

  40. Qayyum, W., Ehtisham, R., Bahrami, A., Camp, C., Mir, J., Ahmad, A.: Assessment of convolutional neural network pre-trained models for detection and orientation of cracks. Materials. 16, 826 (2023). https://doi.org/10.3390/ma16020826

    Article  Google Scholar 

  41. Zhang, L., Yang, F., Daniel Zhang, Y., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP). pp. 3708–3712. IEEE (2016)

  42. Schmugge, S.J., Rice, L., Lindberg, J., Grizziy, R., Joffey, C., Shin, M.C.: Crack segmentation by leveraging multiple frames of varying illumination. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 1045–1053. IEEE (2017)

  43. Forkan, A.R.M., Kang, Y.-B., Jayaraman, P.P., Liao, K., Kaul, R., Morgan, G., Ranjan, R., Sinha, S.: CorrDetector: a framework for structural corrosion detection from drone images using ensemble deep learning. Expert Syst. Appl. 193, 116461 (2022). https://doi.org/10.1016/j.eswa.2021.116461

    Article  Google Scholar 

  44. Xu, Z., Cheung, R.C.C.: Binary convolutional neural network acceleration framework for rapid system prototyping. J. Syst. Architect. 109, 101762 (2020). https://doi.org/10.1016/j.sysarc.2020.101762

    Article  MATH  Google Scholar 

  45. Gopalakrishnan, K., Khaitan, S.K., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.110

    Article  Google Scholar 

  46. Xu, H., Su, X., Wang, Y., Cai, H., Cui, K., Chen, X.: Automatic bridge crack detection using a convolutional neural network. Appl. Sci. 9, 2867 (2019). https://doi.org/10.3390/app9142867

    Article  MATH  Google Scholar 

  47. Schmugge, S.J., Rice, L., Nguyen, N.R., Lindberg, J., Grizzi, R., Joffe, C., Shin, M.C.: Detection of cracks in nuclear power plant using spatial-temporal grouping of local patches. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 1–7. IEEE (2016)

  48. Cha, Y., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civil Infrastr. Eng. 32, 361–378 (2017). https://doi.org/10.1111/mice.12263

    Article  MATH  Google Scholar 

  49. Kim, B., Cho, S.: Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors (Switz.) (2018). https://doi.org/10.3390/s18103452

    Article  MATH  Google Scholar 

  50. Li, N., Hou, X., Yang, X., Dong, Y.: Automation recognition of pavement surface distress based on support vector machine. In: 2009 Second International Conference on Intelligent Networks and Intelligent Systems. pp. 346–349. IEEE (2009)

  51. Chen, K., Yadav, A., Khan, A., Meng, Y., Zhu, K.: Improved crack detection and recognition based on convolutional neural network. Modell. Simul. Eng. 2019, 1–8 (2019). https://doi.org/10.1155/2019/8796743

    Article  MATH  Google Scholar 

  52. Park, S., Bang, S., Kim, H., Kim, H.: Patch-based crack detection in black box images using convolutional neural networks. J. Comput. Civil Eng. (2019). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000831

    Article  MATH  Google Scholar 

  53. Cheng, J.C.P., Wang, M.: Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Autom. Constr. 95, 155–171 (2018). https://doi.org/10.1016/j.autcon.2018.08.006

    Article  MATH  Google Scholar 

  54. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., Omata, H.: Road damage detection and classification using deep neural networks with smartphone images. Comput. Aided Civil Infrastruct. Eng. 33, 1127–1141 (2018). https://doi.org/10.1111/mice.12387

    Article  Google Scholar 

  55. Li, R., Yu, J., Li, F., Yang, R., Wang, Y., Peng, Z.: Automatic bridge crack detection using unmanned aerial vehicle and Faster R-CNN. Constr. Build. Mater. 362, 129659 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129659

    Article  MATH  Google Scholar 

  56. Yan, K., Zhang, Z.: Automated asphalt highway pavement crack detection based on deformable single shot multi-box detector under a complex environment. IEEE Access. 9, 150925–150938 (2021). https://doi.org/10.1109/ACCESS.2021.3125703

    Article  Google Scholar 

  57. Que, Y., Dai, Y., Ji, X., Kwan Leung, A., Chen, Z., Jiang, Z., Tang, Y.: Automatic classification of asphalt pavement cracks using a novel integrated generative adversarial networks and improved VGG model. Eng. Struct. 277, 115406 (2023). https://doi.org/10.1016/j.engstruct.2022.115406

    Article  Google Scholar 

  58. Zhou, S., Canchila, C., Song, W.: Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Autom. Constr. 146, 104678 (2023). https://doi.org/10.1016/j.autcon.2022.104678

    Article  Google Scholar 

  59. Dong, C., Li, L., Yan, J., Zhang, Z., Pan, H., Catbas, F.N.: Pixel-level fatigue crack segmentation in large-scale images of steel structures using an encoder–decoder network. Sensors. 21, 4135 (2021). https://doi.org/10.3390/s21124135

    Article  Google Scholar 

  60. Zhou, S., Song, W.: Concrete roadway crack segmentation using encoder-decoder networks with range images. Autom. Constr. 120, 103403 (2020). https://doi.org/10.1016/j.autcon.2020.103403

    Article  MATH  Google Scholar 

  61. Bang, S., Park, S., Kim, H., Kim, H.: Encoder–decoder network for pixel-level road crack detection in black-box images. Comput. Aided Civil Infrastruct. Eng. 34, 713–727 (2019). https://doi.org/10.1111/mice.12440

    Article  MATH  Google Scholar 

  62. Wang, J., Zeng, Z., Sharma, P.K., Alfarraj, O., Tolba, A., Zhang, J., Wang, L.: Dual-path network combining CNN and transformer for pavement crack segmentation. Autom. Constr. 158, 105217 (2024). https://doi.org/10.1016/j.autcon.2023.105217

    Article  MATH  Google Scholar 

  63. Islam, M.M.M., Kim, J.-M.: Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder–decoder network. Sensors. 19, 4251 (2019). https://doi.org/10.3390/s19194251

    Article  MATH  Google Scholar 

  64. Xiang, C., Guo, J., Cao, R., Deng, L.: A crack-segmentation algorithm fusing transformers and convolutional neural networks for complex detection scenarios. Autom. Constr. 152, 104894 (2023). https://doi.org/10.1016/j.autcon.2023.104894

    Article  MATH  Google Scholar 

  65. Zhang, A., Wang, K.C.P., Fei, Y., Liu, Y., Chen, C., Yang, G., Li, J.Q., Yang, E., Qiu, S.: Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network. Comput. Aided Civil Infrastruct. Eng. 34, 213–229 (2019). https://doi.org/10.1111/mice.12409

    Article  MATH  Google Scholar 

  66. Pan, Z., Lau, S.L.H., Yang, X., Guo, N., Wang, X.: Automatic pavement crack segmentation using a generative adversarial network (GAN)-based convolutional neural network. Results Eng. 19, 101267 (2023). https://doi.org/10.1016/j.rineng.2023.101267

    Article  Google Scholar 

  67. Özgenel, C.F.: Concrete crack images for classification. Mendeley Data. (2018). https://doi.org/10.17632/5y9wdsg2zt.2

    Article  MATH  Google Scholar 

  68. Abadi, M., Agarwal, A., Barham, P., Brevdo, E.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  69. Reyad, M., Sarhan, A.M., Arafa, M.: A modified Adam algorithm for deep neural network optimization. Neural Comput. Appl. 35, 17095–17112 (2023). https://doi.org/10.1007/s00521-023-08568-z

    Article  Google Scholar 

  70. Carrington, A.M., Manuel, D.G., Fieguth, P.W., Ramsay, T., Osmani, V., Wernly, B., Bennett, C., Hawken, S., Magwood, O., Sheikh, Y., McInnes, M., Holzinger, A.: Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation. IEEE Trans. Pattern Anal. Mach. Intell. 45, 329–341 (2023). https://doi.org/10.1109/TPAMI.2022.3145392

    Article  Google Scholar 

  71. Chen, D., Lu, Y., Hsu, C.-Y.: Measurement invariance investigation for performance of deep learning architectures. IEEE Access. 10, 78070–78087 (2022). https://doi.org/10.1109/ACCESS.2022.3192468

    Article  MATH  Google Scholar 

  72. Özgenel, F., Gönenç Sorguç, A.: Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In: ISARC 2018—35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things. International Association for Automation and Robotics in Construction I.A.A.R.C) (2018)

  73. Yamane, T., Chun, P.J.: Crack detection from a concrete surface image based on semantic segmentation using deep learning. J. Adv. Concr. Technol. 18, 493–504 (2020). https://doi.org/10.3151/jact.18.493

    Article  MATH  Google Scholar 

  74. Silva, W.R.L.D., Lucena, D.S.D.: Concrete cracks detection based on deep learning image classification. Presented at the July 2 (2018)

  75. Protopapadakis, E., Voulodimos, A., Doulamis, A., Doulamis, N., Stathaki, T.: Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing. Appl. Intell. 49, 2793–2806 (2019). https://doi.org/10.1007/s10489-018-01396-y

    Article  MATH  Google Scholar 

  76. Park, S.E., Eem, S.H., Jeon, H.: Concrete crack detection and quantification using deep learning and structured light. Constr Build Mater. 252, 119096 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119096

    Article  MATH  Google Scholar 

  77. Kim, B., Yuvaraj, N., Sri Preethaa, K.R., Arun Pandian, R.: Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. Neural Comput. Appl. 33, 9289–9305 (2021). https://doi.org/10.1007/s00521-021-05690-8

    Article  MATH  Google Scholar 

  78. Rajadurai, R.S., Kang, S.T.: Automated vision-based crack detection on concrete surfaces using deep learning. Appl. Sci. (Switz). (2021). https://doi.org/10.3390/app11115229

    Article  MATH  Google Scholar 

  79. Pu, R., Ren, G., Li, H., Jiang, W., Zhang, J., Qin, H.: Autonomous concrete crack semantic segmentation using deep fully convolutional encoder–decoder network in concrete structures inspection. Buildings. (2022). https://doi.org/10.3390/buildings12112019

    Article  MATH  Google Scholar 

  80. Kim, J.H., Lee, J.: Efficient dataset collection for concrete crack detection with spatial-adaptive data augmentation. IEEE Access. 11, 121902–121913 (2023). https://doi.org/10.1109/ACCESS.2023.3328243

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Researchers Supporting Project number (RSP2025R433), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Abbas made substantial contributions to the conception and design of the study. Abbas and Alghamdi were responsible for data acquisition, analysis, and interpretation. Abbas conducted the machine learning modeling and statistical analyses. Alghamdi contributed to the development of the validation framework and supervised the research process. Abbas drafted the manuscript, and Alghamdi critically revised it for important intellectual content. All authors reviewed the manuscript, approved the version to be published, and agreed to be accountable for all aspects of the work, ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Yassir M. Abbas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (IPYNB 1488 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Y.M., Alghamdi, H. Semantic segmentation and deep CNN learning vision-based crack recognition system for concrete surfaces: development and implementation. SIViP 19, 339 (2025). https://doi.org/10.1007/s11760-025-03913-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03913-2

Keywords