Skip to main content

Advertisement

Log in

Efficient monkeypox detection using hybrid lightweight CNN architectures and optimized SVM with grid search on imbalanced data

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The detection of the Monkeypox virus outside of Africa, with its identification in Sweden in August, followed by the World Health Organization's declaration of a global health emergency, has heightened concerns about the potential emergence of a new epidemic. Effectively managing disease detection and isolation processes is crucial to avoid the adverse impacts of a global pandemic. A hybrid classification-based approach is presented for detecting Monkeypox, focusing on the early symptoms of skin lesions, which typically appear within three days. Due to the limited availability of data, Convolutional Neural Network models were employed. The proposed method integrates multiple Convolutional Neural Network architectures, including MobileNetV3Large and EfficientNetB0, to enhance the effectiveness of feature extraction. Classification was performed using an optimized Support Vector Machine method, refined through Grid Search to ensure optimal parameter selection. The optimized Support Vector Machine highly improved the classification accuracy. This approach, aimed at generalizability, has demonstrated successful results on the Monkeypox Skin Images Dataset and Monkeypox Skin Lesion Dataset open-access datasets. The proposed method achieved a maximum accuracy of 98.67% on the Monkeypox Skin Images Dataset and 98.13% on the Monkeypox Skin Lesion Dataset when cross-validation was applied to the generated dataset partitions. This study is considered a significant step toward the early detection of Monkeypox and the development of effective intervention strategies, which will contribute to preventing future outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Rizk, J.G., Lippi, G., Henry, B.M., Forthal, D.N., Rizk, Y.: Prevention and treatment of monkeypox. Drugs 82(9), 957–963 (2022). https://doi.org/10.1007/s40265-022-01742-y

    Article  MATH  Google Scholar 

  2. Thornhill, J.P., Barkati, S., Walmsley, S., Rockstroh, J., Antinori, A., Harrison, L.B., Palich, P., Nori, A., Reeves, I., Orkin, C.M., et al.: Monkeypox virus infection in humans across 16 countries—April–June 2022. N. Engl. J. Med. 387, 679–691 (2022)

    Google Scholar 

  3. Nayak, T., Chadaga, K., Sampathila, N., Mayrose, H., Gokulkrishnan, N., Muralidhar Bairy, G., Prabhu, S., Swathi, K.S., Umakanth, S.: Deep learning based detection of Monkeypox virus using skin lesion images. Med. Novel Technol. Devices 18, 100243 (2023). https://doi.org/10.1016/j.medntd.2023.100243

    Article  Google Scholar 

  4. WHO—Monkeypox Fact Sheet, 2022, [Online]. Available: https: //www.who.int/news-room/fact-sheets/detail/Monkeypox

  5. Miura, F., van Ewijk, C.E., Backer, J.A., Xiridou, M., Franz, E., Op, E., de Coul, D., Brandwagt, B., van Cleef, G., van Rijckevorsel, C., Swaan, S., van den Hof, J.: Estimated incubation period for monkeypox cases confirmed in The Netherlands, May 2022. Eurosurveillance (2022). https://doi.org/10.2807/1560-7917.ES.2022.27.24.2200448

    Article  Google Scholar 

  6. Monkeypox. Available online: https://www.who.int/news-room/fact-sheets/detail/Monkeypox (accessed on 23 July 2024).

  7. https://www.who.int/news/item/14-08-2024-who-director-general-declares-mpox-outbreak-a-public-health-emergency-of-international-concern (Accessed on 23 August 2024)

  8. Nafisa Ali, S., Ahmed, T., Paul, J., Jahan, T., Sani, S., Noor, N., Hasan, T.: Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study. arXiv, 13. Available online: https://arxiv.org/pdf/2207.03342.pdf (accessed on 24 August 2024)

  9. Sahin, V.H., Oztel, I., Yolcu Oztel, G.: Human monkeypox classification from skin lesion images with deep pre-trained network using mobile application. J. Med. Syst. 46, 79 (2022)

    MATH  Google Scholar 

  10. Alrusaini, O.A.: Deep learning models for the detection of monkeypox skin lesion on digital skin images. Int. J. Adv. Comput. Sci. Appl. 14, 637–644 (2023)

    Google Scholar 

  11. Ozsahin, D.U., Mustapha, M.T., Uzun, B., Duwa, B., Ozsahin, I.: Computer-aided detection and classification of monkeypox and chickenpox lesion in human subjects using deep learning framework. Diagnostics 13(2), 292 (2023). https://doi.org/10.3390/diagnostics13020292

    Article  MATH  Google Scholar 

  12. Dahiya, N., Sharma, Y.K., Rani, U., Hussain, S., Nabilal, K.V., Mohan, A., Nuristani, N.: Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection. Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-43236-1

    Article  Google Scholar 

  13. Alakus, T.B., Baykara, M.: Comparison of monkeypox and Wart DNA sequences with deep learning model. Appl. Sci. 12(20), 10216 (2022). https://doi.org/10.3390/app122010216

    Article  MATH  Google Scholar 

  14. Sitaula, C., Shahi, T.B.: Monkeypox virus detection using pre-trained deep learning-based approaches. J. Med. Syst. 46, 78 (2022)

    Google Scholar 

  15. Ahsan, M., et al.: Monkeypox diagnosis with interpretable deep learning. IEEE Access 11, 81965–81980 (2023). https://doi.org/10.1109/ACCESS.2023.3300793

    Article  MATH  Google Scholar 

  16. Ali, S.N., et al.: Monkeypox skin lesion detection using deep learning models: a feasibility study." arXiv preprint arXiv:2207.03342 (2022)

  17. Jaradat, A.S., Mamlook, R.E.A., Almakayeel, N., Alharbe, N., Almuflih, A.S., Nasayreh, A., Gharaibeh, H., Gharaibeh, M., Gharaibeh, A., Bzizi, H.: Automated monkeypox skin lesion detection using deep learning and transfer learning techniques. Int. J. Environ. Res. Public Health 20(5), 4422 (2023). https://doi.org/10.3390/ijerph20054422s

    Article  MATH  Google Scholar 

  18. Zivkovic, M., Bacanin, N., Antonijevic, M., Nikolic, B., Kvascev, G., Marjanovic, M., Savanovic, N.: Hybrid CNN and XGBoost model tuned by modified arithmetic optimization algorithm for COVID-19 early diagnostics from X-ray images. Electronics 11(22), 3798 (2022)

    Google Scholar 

  19. Nagoor, S., Jinny, S.V.: A dual fuzzy with hybrid deep learning architecture based on CNN with hybrid metaheuristic algorithm for effective segmentation and classification. Int. J. Inf. Technol. 15(1), 531–543 (2023)

    MATH  Google Scholar 

  20. Jovanovic, L., Damaševičius, R., Matic, R., Kabiljo, M., Simic, V., Kunjadic, G., Bacanin, N.: Detecting Parkinson’s disease from shoe-mounted accelerometer sensors using convolutional neural networks optimized with modified metaheuristics. Peer J. Comput. Sci. 10, e2031 (2024)

    Google Scholar 

  21. Basha, J., Bacanin, N., Vukobrat, N., Zivkovic, M., Venkatachalam, K., Hubálovský, S., Trojovský, P.: Chaotic harris hawks optimization with quasi-reflection-based learning: an application to enhance CNN design. Sensors 21(19), 6654 (2021)

    Google Scholar 

  22. Ali, S. N., Ahmed, M. T., Paul, J., Jahan, T., Sani, S. M. Sakeef, Noor, N., Hasan, T.: (2022). Monkeypox skin lesion detection using deep learning models: a preliminary feasibility study. arXiv preprint arXiv:2207.03342.

  23. Diponkor Bala, Md., Hossain, S., Hossain, M.A., Ibrahim Abdullah, Md., Mizanur Rahman, Md., Manavalan, B., Naijie, Gu., Islam, M.S., Huang, Z.: MonkeyNet: a robust deep convolutional neural network for monkeypox disease detection and classification. Neural Netw. 161, 757–775 (2023). https://doi.org/10.1016/j.neunet.2023.02.022

    Article  Google Scholar 

  24. Shams, M.Y., Elshewey, A.M., El-kenawy, E.-S., Ibrahim, A., Talaat, F.M., Tarek, Z.: Water quality prediction using machine learning models based on grid search method. Multimed. Tools Appl. 83(12), 35307–35334 (2023). https://doi.org/10.1007/s11042-023-16737-4

    Article  Google Scholar 

  25. Pulat, M., İpek D.K.: Türkiye’de Makine Öğrenmesi ve Karar Ağaçları Alanında Yayınlanmış Tezlerin Bibliyometrik Analizi. Yönetim ve Ekonomi Dergisi 28, 287–308 (2021)

  26. Jawadul Karim, M., Omaer Faruq Goni, M., Nahiduzzaman, M., Ahsan, M., Haider, J., Kowalski, M.: Enhancing agriculture through real-time grape leaf disease classification via an edge device with a lightweight CNN architecture and Grad-CAM. Sci. Rep. (2024). https://doi.org/10.1038/s41598-024-66989-9

    Article  Google Scholar 

  27. Yücel, Z., Akal, F., Oltulu, P.: Automated AI-based grading of neuroendocrine tumors using Ki-67 proliferation index: comparative evaluation and performance analysis. Med. Biol. Eng. Comput. 62(6), 1899–1909 (2024)

    Google Scholar 

  28. Sharma, N., Gupta, S., Reshan, M.S.A., Sulaiman, A., Alshahrani, H., Shaikh, A.: EfficientNetB0 cum FPN based semantic segmentation of gastrointestinal tract organs in MRI scans. Diagnostics 13(14), 2399 (2023). https://doi.org/10.3390/diagnostics13142399

    Article  Google Scholar 

  29. Patel, C. H., et al.: EfficientNetB0 for brain stroke classification on computed tomography scan." 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). IEEE (2023)

  30. Sitaula, C., Shahi, T.B.: Monkeypox virus detection using pre-trained deep learning-based approaches. J. Med. Syst. (2022). https://doi.org/10.1007/s10916-022-01868-2

    Article  MATH  Google Scholar 

  31. Rabaan, A.A., et al.: Monkeypox outbreak 2022: what we know so far and its potential drug targets and management strategies. J. Med. Virol. 95(1), e28306 (2023)

    Google Scholar 

  32. Islam, T., Hussain, M., Chowdhury, F., Islam, B.: Can artificial intelligence detect monkeypox from digital skin images? BioRxiv 16, e0010141 (2022)

    MATH  Google Scholar 

  33. Kumar, V.: Analysis of CNN features with multiple machine learning classifiers in diagnosis of monkeypox from digital skin images. MedRxiv 464, 364 (2022)

    MATH  Google Scholar 

  34. Ahsan, M.M., et al.: Image Data collection and implementation of deep learning-based model in detecting Monkeypox disease using modified VGG16." arXiv preprint arXiv:2206.01862 (2022)

  35. Haque, R., Arifa S., Promila H.: Ensemble of fine-tuned deep learning models for monkeypox detection: a comparative study." 2023 4th International Conference for Emerging Technology (INCET). IEEE (2023)

  36. Akin K.D., Gurkan, C., Budak, A., Karatas, H.: Classification of monkeypox skin lesion using the explainable artificial intelligence assisted convolutional neural networks. Avrupa Bilim ve Teknoloji Dergisi 40, 106 (2022)

  37. Abdelhamid, A.A., El-Kenawy, E.-S.M., Khodadadi, N., Mirjalili, S., Khafaga, D.S., Alharbi, A.H., Ibrahim, A., Eid, M.M., Saber, M.: Classification of monkeypox images based on transfer learning and the Al-Biruni earth radius optimization algorithm. Mathematics 10, 3614 (2022)

    Google Scholar 

Download references

Acknowledgements

The author thanks the dataset owners for sharing their datasets.

Funding

There is no funding source for this article.

Author information

Authors and Affiliations

Authors

Contributions

D.C. was solely responsible for the conception, design, and execution of the study. All aspects of the work were performed independently by the author.

Corresponding author

Correspondence to Dilber Çetintaş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetintaş, D. Efficient monkeypox detection using hybrid lightweight CNN architectures and optimized SVM with grid search on imbalanced data. SIViP 19, 336 (2025). https://doi.org/10.1007/s11760-025-03915-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03915-0

Keywords