Skip to main content
Log in

A data enhanced algorithm for fault diagnosis of slewing bearings based on times-series generative adversarial networks

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Due to the fewer fault samples, it is difficult to diagnose the fault of slewing bearings in complex working conditions. For this reason, a model based on Time-series Generative Adversarial Networks (Time GAN) combined with Synergistic Similarity Graph Construction (SSGC) and Graph Attention Network (GAT) is proposed. Time GAN is introduced to generate new training sample features while preserving the unique temporal correlation of its samples. SSGC method is utilized to construct graph structure data for the newly generated training samples and put them into the GAT model with multi-head attention mechanism for classification. This solves the problem that traditional deep learning methods cannot fully utilize the spatial relationship between training sample features under different working conditions. The experimental results show that the proposed method can effectively recognize each health state of slewing bearing with classification accuracy of up to 90%, which is better than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Considering the shared nature of the data, the data is publicly available from JUST Slewing bearing datasets-1—Mendeley Data. No datasets were generated or analysed during the current study.

References

  1. Wang, F., Liu, C., Su, W., Xue, Z., Li, H., Han, Q.: Condition monitoring and fault diagnosis methods for low-speed and heavy-load slewing bearings: a literature review. J. Vibroeng. 19(5), 3429–3444 (2017). https://doi.org/10.21595/jve.2017.18454

    Article  MATH  Google Scholar 

  2. Tao, H.F., Qiu, J., Chen, Y.Y., Stojanovic, V., Chen, L.: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion. J. Franklin Inst. 360(2), 1454–1477 (2023). https://doi.org/10.1016/j.jfranklin.2022.11.004

    Article  MATH  Google Scholar 

  3. Tao, H.F., Zheng, J.H., Wei, J.Y., Paszke, W., Rogers, E., Stojanovic, V.: Repetitive process based indirect-type iterative learning control for batch processes with model uncertainty and input delay. J. Process. Control. 132, 103112 (2023). https://doi.org/10.1016/j.jprocont.2023.103112

    Article  MATH  Google Scholar 

  4. Peng, H.D., Du, J.S., Gao, J., Yu, J., Wei, W.: Adversarial training of multi-scale channel attention network for enhanced robustness in bearing fault diagnosis. Meas. Sci. Technol. 35(5), 056204 (2024). https://doi.org/10.1088/1361-6501/ad2828

    Article  MATH  Google Scholar 

  5. Zhao, D.F., Liu, S.L., Miao, Z.H., Zhang, H.L., Wei, D.: Subdomain adaptation joint attention network enabled two-stage strategy towards few-shot fault diagnosis of LRE turbopump. Adv. Eng. Inform. 60, 102366 (2024). https://doi.org/10.1016/j.aei.2024.102366

    Article  MATH  Google Scholar 

  6. Li, F.L., Zhao, X.L.: A novel approach for bearings multiclass fault diagnosis fusing multiscale deep convolution and hybrid attention networks. Meas. Sci. Technol. 35(4), 045017 (2024). https://doi.org/10.1088/1361-6501/ad1c47

    Article  MathSciNet  MATH  Google Scholar 

  7. Xin, J., Chen, Y.M., Wang, L., Han, H.L., Chen, P.: Failure prediction, monitoring and diagnosis methods for slewing bearings of large-scale wind turbine: a review. Measurement 172, 108855 (2021). https://doi.org/10.1016/j.measurement.2020.108855

    Article  MATH  Google Scholar 

  8. Wang, Y.F., Yang, Y.S., He, Z.T.: Signal processing method for condition monitoring of portal crane. In: International Symposium on Sensing and Instrumentation in 5G and IoT Era(ISSI), pp. 191–197. IEEE (2022). https://doi.org/10.1109/ISSI55442.2022.9963466

  9. Liu, Y., Jin, Y.G., Cui, G.Y., Shen, G.T.: Study and application on the early damage signal characteristics of ultra-low-speed and heavy-load rolling bearings of large amusement machinery. Insight 65(5), 270–277 (2023). https://doi.org/10.1784/insi.2023.65.5.270

    Article  Google Scholar 

  10. Pan, Y.B., Wang, H., Chen, J., Hong, R.J.: Fault recognition of large-size low-speed slewing bearing based on improved deep belief network. J. Vib. Control 29(11–12), 2829–2841 (2023). https://doi.org/10.1177/10775463221085856

    Article  MATH  Google Scholar 

  11. Yang, B., Lei, Y.G., Li, X., Roberts, C.: Deep targeted transfer learning along designable adaptation trajectory for fault diagnosis across different machines. IEEE Trans. Indust. Electron. 70(9), 9463–9473 (2022). https://doi.org/10.1109/TIE.2022.3212415

    Article  MATH  Google Scholar 

  12. Han, T., Li, Y.F., Lei, Y.G., Li, X.: Semi-supervised fault diagnosis via graph label propagation and discriminative feature enhancement for critical components of industrial robot. J Mech Eng 58(17), 116–124 (2022). https://doi.org/10.3901/JME.2022.17.116

    Article  MATH  Google Scholar 

  13. Jia, F., Li, S.H., Shen, J.J., Ma, J.X., Li, N.P.: Fault diagnosis of rolling bearings using deep transfer learning and adaptive weighting. J. Xi’an Jiaotong Univ. 56(08), 1–10 (2022). https://doi.org/10.7652/xjtuxb202208001

    Article  MATH  Google Scholar 

  14. Chen, K., Hu, J., Zhang, Y., Yu, Z., He, J.: Fault location in power distribution systems via deep graph convolutional networks. IEEE J. Sel. Areas Commun. 38(1), 119–131 (2020). https://doi.org/10.1109/JSAC.2019.2951964

    Article  MATH  Google Scholar 

  15. Li, T.F., Zhao, Z.B., Sun, C., Yan, R.Q., Chen, X.F.: Multireceptive field graph convolutional networks for machine fault diagnosis. IEEE Trans. Ind. Electron. 68(12), 12739–12749 (2021). https://doi.org/10.1109/TIE.2020.3040669

    Article  MATH  Google Scholar 

  16. Zhao, X.L., Jia, M.P., Liu, Z.: Semisupervised graph convolution deep belief network for fault diagnosis of electormechanical system with limited labeled data. IEEE Trans. Industr. Inf. 17(8), 5450–5460 (2021). https://doi.org/10.1109/TII.2020.3034189

    Article  MATH  Google Scholar 

  17. Li, T.F., Zhao, Z.B., Sun, C., Yan, R.Q., Chen, X.F.: Domain adversarial graph convolutional network for fault diagnosis under variable working conditions. IEEE Trans. Instrum. Meas. 70, 3515010 (2021). https://doi.org/10.1109/TIM.2021.3075016

    Article  MATH  Google Scholar 

  18. Li, T.F., Zhou, Z., Li, S.N., Sun, C., Yan, R.Q., Chen, X.F.: The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study. Mech. Syst. Signal Process. 168, 108653 (2022). https://doi.org/10.1016/j.ymssp.2021.108653

    Article  MATH  Google Scholar 

  19. Zhang, Z.W., Peng, C., Zhu, W.W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. 34(1), 249–270 (2022). https://doi.org/10.1109/TKDE.2020.2981333

    Article  MATH  Google Scholar 

  20. Zuo, D., Tang, T., Chen, M.: Rolling bearing fault diagnosis based on multi-scale weighted visibility graph and multi-channel graph convolution network. Meas. Sci. Technol. 34(11), 115019 (2023). https://doi.org/10.1088/1361-6501/ace7e5

    Article  MATH  Google Scholar 

  21. Chen, C., Yuan, Y.P., Zhao, F.Y.: Intelligent compound fault diagnosis of roller bearings based on deep graph convolutional network. Sensors 23(20), 8489 (2023). https://doi.org/10.3390/s23208489

    Article  MATH  Google Scholar 

  22. Wang, Y.P., Zhang, S., Cao, R.F., Xu, D., Fan, Y.Q.: A rolling bearing fault diagnosis method based on the WOA-VMD and the GAT. Entropy 25(6), 889 (2023). https://doi.org/10.3390/e25060889

    Article  MATH  Google Scholar 

  23. Zhang, W., Li, C.H., Peng, G.L., Chen, Y.H., Zhang, Z.J.: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 100(1), 439–453 (2018). https://doi.org/10.1016/j.ymssp.2017.06.022

    Article  MATH  Google Scholar 

  24. Veličkovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks (2018). arXiv preprint arXiv:1710.10903. https://doi.org/10.48550/arXiv.1710.10903

  25. Tao, H.F., Shi, H.J., Qiu, J., Jin, G.H., Stojanovic, V.: Planetary gearbox fault diagnosis based on FDKNN-DGAT with few labeled data. Meas. Sci. Technol. 35(2), 025036 (2024). https://doi.org/10.1088/1361-6501/ad0f6d

    Article  Google Scholar 

  26. Li, H.Q., Zhang, Z.X., Li, T.M., Si, X.S.: A review on physics-informed data-driven remaining useful life prediction: challenges and opportunities. Mech. Syst. Signal Process. 209, 111120 (2024). https://doi.org/10.1016/j.ymssp.2024.111120

    Article  MATH  Google Scholar 

  27. Zhang, T.C., Chen, J.L., Li, F.D., Zhang, K.Y., Lv, H.X., He, S.L., Xu, E.Y.: Intelligent fault diagnosis of machines with small & imbalanced data: a state-of-the-art review and possible extensions. ISA Trans. 119, 152–171 (2022). https://doi.org/10.1016/j.isatra.2021.02.042

    Article  MATH  Google Scholar 

  28. Chen, L., Wu, P., Liu, Y.T., Liu, X.Y., Yang, J.M.: Development and application of the latest generation against the network of GAN. J. Electr. Meas. Instrum. 34(6), 70–78 (2020). https://doi.org/10.13382/j.jemi.B1901941

    Article  MATH  Google Scholar 

  29. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems(NIPS), pp. 2672–2680. MIT Press (2014). https://doi.org/10.1145/3422622

  30. Yoon, J., Jarrett, D., van der Schaar, M.: Time-series generative adversarial networks. Autom. Electr. Power Syst. 43(1), 149–157 (2019)

    MATH  Google Scholar 

  31. Brophy, E., Wang, Z., She, Q., Ward, T.: Generative adversarial networks in time series: a systematic literature review. ACM Comput. Surv. 55(10), 1–31 (2023). https://doi.org/10.1145/3559540

    Article  MATH  Google Scholar 

  32. Chen, Y., Chen, Z., Amin, H.U.: Synergistic Similarity graph construction for steel plate fault diagnosis with graph attention networks. In: Proceedings of the 2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII), pp. 655–660. IEEE (2023). https://doi.org/10.1109/ICKII58656.2023.10332743

  33. Zhou, J., Cui, G.Q., Hu, S.D., Zhang, Z.Y., Yang, C., Liu, Z.Y., Wang, L.F., Li, C.C., Sun, M.S.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020). https://doi.org/10.1016/j.aiopen.2021.01.001

    Article  MATH  Google Scholar 

  34. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9

    Article  MATH  Google Scholar 

  35. Platzer, A.: Visualization of SNPs with t-SNE. PLoS ONE 8(2), e56883 (2013). https://doi.org/10.1371/journal.pone.0056883

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No. 62203193) and Jiangsu Province Higher Education Institutions Basic Disciplines (21KJB510016).

Author information

Authors and Affiliations

Authors

Contributions

L.S.and J.W.wrote the main manuscript text. G.L. and X.R. prepare all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Wu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wu, J., Li, G. et al. A data enhanced algorithm for fault diagnosis of slewing bearings based on times-series generative adversarial networks. SIViP 19, 329 (2025). https://doi.org/10.1007/s11760-025-03939-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-025-03939-6

Keywords