Skip to main content

Arrangements on Parametric Surfaces II: Concretizations and Applications

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We describe the algorithms and implementation details involved in the concretizations of a generic framework that enables exact construction, maintenance, and manipulation of arrangements embedded on certain two-dimensional orientable parametric surfaces in three-dimensional space. The fundamentals of the framework are described in a companion paper. Our work covers arrangements embedded on elliptic quadrics and cyclides induced by intersections with other algebraic surfaces, and a specialized case of arrangements induced by arcs of great circles embedded on the sphere. We also demonstrate how such arrangements can be used to accomplish various geometric tasks efficiently, such as computing the Minkowski sums of polytopes, the envelope of surfaces, and Voronoi diagrams embedded on parametric surfaces. We do not assume general position. Namely, we handle degenerate input, and produce exact results in all cases. Our implementation is realized using Cgal and, in particular, the package that provides the underlying framework. We have conducted experiments on various data sets, and documented the practical efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal P.K., Schwarzkopf O., Sharir M.: The overlay of lower envelopes and its applications. Discrete Comput. Geom. 15, 1–13 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal P.K., Sharir M.: Arrangements and their applications. In: Sack, J.-R., Urrutia, J. (eds) Handbook of Computational Geometry, chap. 2, pp. 49–119. Elsevier/B.V. North-Holland, Amsterdam/North-Holland (2000)

    Chapter  Google Scholar 

  3. Aurenhammer F., Klein R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds) Handbook of Computational Geometry, chap. 5, pp. 201–290. Elsevier/B.V. North-Holland, Amsterdam/North-Holland (2000)

    Chapter  Google Scholar 

  4. Austern M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1999)

    Google Scholar 

  5. Basu S., Pollack R., Roy M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  6. Berberich, E.: Robust and Efficient Software for Problems in 2.5-Dimensional Non-Linear Geometry (Algorithms and Implementations). Ph.D. thesis, Universität des Saarlandes, Germany (2008)

  7. Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Sweeping and maintaining two-dimensional arrangements on surfaces: a first step. In: Proceedings of 15th Annual European Symposium on Algorithms (ESA). LNCS, vol. 4698, pp. 645–656. Springer, Berlin (2007)

  8. Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements on parametric surfaces I: general framework and infrastructure. Math. Comput. Sci. (2010). doi:10.1007/s11786-010-0042-5

  9. Berberich, E., Fogel, E., Halperin, D., Wein, R.: Sweeping over curves and maintaining two-dimensional arrangements on surfaces. In: Abstracts of 23rd European Workshop on Computational Geometry, pp. 223–226 (2007)

  10. Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact, complete and efficient implementation for computing planar maps of quadric intersection curves. In: Proceedings of 21st Annual ACM Symposium on Computational Geometry (SoCG), pp. 99–106. Association for Computing Machinery (ACM) Press, New York (2005)

  11. Berberich, E., Kerber, M.: Exact arrangements on tori and Dupin cyclides. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM), pp. 59–66. Association for Computing Machinery (ACM) Press, New York (2008)

  12. Boehm W.: On cyclides in geometric modeling. Comput. Aided Geom. Design 7, 243–255 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Boissonnat J.-D., Wormser C., Yvinec M.: Curved Voronoi diagrams. In: Boissonnat, J.-D., Teillaud, M. (eds) Effective Computational Geometry for Curves and Surfaces, pp. 67–116. Springer, Berlin (2007)

    Google Scholar 

  14. Caroli, M., Teillaud, M.: Compute 3D periodic triangulations. Technical Report 6823, Inria Sophia-Antipolis (2009)

  15. Cazals F., Loriot S.: Computing the arrangement of circles on a sphere, with applications in structural biology. Comput. Geom. Theory Appl. 42(6–7), 551–565 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Chandru V., Dutta D., Hoffmann C.M.: On the geometry of Dupin cyclides. Visual Comput. 5(5), 277–290 (1989)

    Article  Google Scholar 

  17. de Berg M., van Kreveld M., Overmars M., Schwarzkopf O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  18. de Castro P.M.M., Cazals F., Loriot S., Teillaud M.: Design of the CGAL 3D Spherical Kernel and application to arrangements of circles on a sphere. Comput. Geom. Theory Appl. 42(6–7), 536–550 (2009)

    MATH  Google Scholar 

  19. Dupin C.: Applications de Géométrie et de Méchanique. Bachelier, Paris (1822)

    Google Scholar 

  20. Edelsbrunner H., Seidel R.: Voronoi diagrams and arrangements. Discrete Comput. Geom. 1, 25–44 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Eigenwillig, A., Kerber, M.: Exact and efficient 2D-arrangements of arbitrary algebraic curves. In: Proceedings of 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Philadelphia, PA, USA, 2008, pp. 122–131. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

  22. Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and exact geometric analysis of real algebraic plane curves. In: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, New York, NY, USA, 2007, pp. 151–158. Association for Computing Machinery (ACM) Press, New York (2007)

  23. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A Descartes algorithm for polynomials with bit-stream coefficients. In: 8th International Workshop on Computer Algebra in Scientific Computing. LNCS, vol. 3718, pp. 138–149 (2005)

  24. Emeliyanenko, P.: Visualization of points and segments of real algebraic plane curves. M.Sc. thesis, Universität des Saarlandes, Germany (2007)

  25. Zacharias Emiris I., Ioannis Karavelas M.: The predicates of the Apollonius diagram: algorithmic analysis and implementation. Comput. Geom. Theory Appl. 33(1-2), 18–57 (2006)

    Google Scholar 

  26. Zacharias Emiris, I., Tsigaridas, E.P., Tzoumas, G.: Voronoi diagram of ellipses in CGAL. In: Abstracts of 24th European Workshop on Computational Geometry, pp. 87–90 (2008)

  27. Fabri A., Giezeman G.-J., Kettner L., Schirra S., Schönherr S.: On the design of Cgal a computational geometry algorithms library. Softw. Pract. Experience 30(11), 1167–1202 (2000)

    Google Scholar 

  28. Fogel, E.: Minkowski Sum Construction and other Applications of Arrangements of Geodesic Arcs on the Sphere. Ph.D. thesis, The Blavatnik School of Computer Science, Tel-Aviv University (2009)

  29. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. In: Proceedings of 8th Workshop on Algorithm Engineering and Experiments (2006)

  30. Fogel E., Halperin D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. Comput. Aided Design 39(11), 929–940 (2007)

    Article  MATH  Google Scholar 

  31. Fogel E., Halperin D., Kettner L., Teillaud M., Wein R., Wolpert N.: Arrangements. In: Boissonnat, J.-D., Teillaud, M. (eds) Effective Computational Geometry for Curves and Surfaces, chap. 1, pp. 1–66. Springer, Berlin (2007)

    Google Scholar 

  32. Fogel, E., Setter, O., Halperin, D.: Exact implementation of arrangements of geodesic arcs on the sphere with applications. In: Abstracts of 24th European Workshop on Computational Geometry, pp. 83–86 (2008)

  33. Fogel, E., Setter, O., Halperin, D.: Movie: arrangements of geodesic arcs on the sphere. In: Proceedings of 24th Annual ACM Symposium on Computational Geometry (SoCG), pp. 218–219. Association for Computing Machinery (ACM) Press, New York (2008)

  34. Russel Forsyth A.: Lectures on the Differential Geometry of Curves and Surfaces. Cambridge University Press, Cambridge (1912)

    Google Scholar 

  35. Fukuda K.: From the zonotope construction to the Minkowski addition of convex polytopes. J. Symbolic Comput. 38(4), 1261–1272 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Guibas L.J., Stolfi J.: Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph. 4(2), 74–123 (1985)

    Article  MATH  Google Scholar 

  37. Hachenberger, P., Kettner, L., Mehlhorn, K.: Boolean operations on 3D selective Nef complexes: data structure, algorithms, optimized implementation and experiments. Comput. Geom. Theory Appl. 38(1–2), 64–99 (2007) (Special issue on Cgal)

    Google Scholar 

  38. Halperin D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds) Handbook of Discrete and Computational Geometry, chap. 24, 2nd edn., pp. 529–562. Chapman & Hall/CRC, London (2004)

    Google Scholar 

  39. Halperin D., Shelton C.R.: A perturbation scheme for spherical arrangements with application to molecular modeling. Comput. Geom. Theory Appl. 10, 273–287 (1998)

    MATH  MathSciNet  Google Scholar 

  40. Hemmer, M.: Exact Computation of the Adjacency Graph of an Arrangement of Quadrics. Ph.D. thesis, Johannes-Gutenberg-Universität, Mainz, Germany (2008)

  41. Hemmer, M., Limbach, S., Schömer, E.: Continued work on the computation of an exact arrangement of quadrics. In: Collections of Abstracts of 25th European Workshop on Computational Geometry, pp. 313–316 (2009)

  42. Hert, S., Hoffmann, M., Kettner, L., Pion, S., Seel, M.: An adaptable and extensible geometry kernel. In: Proceedings of 5th International Workshop on Algorithm Engineering (WAE). LNCS, vol. 2141, pp. 79–90. Springer, Berlin (2001)

  43. Hert, S., Schirra, S.: 3D convex hulls. In: Cgal User and Reference Manual. Cgal Editorial Board, 3.7 edn. (2010). http://www.cgal.org/Manual/3.7/doc_html/cgal_manual/packages.html/#Pkg:ConvexHull3

  44. Hodgson C.D., Rivin I., Smith W.D.: A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere. Bull. AMS (New Series) 27, 246–251 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  45. Imai H., Iri M., Murota K.: Voronoi diagram in the Laguerre geometry and its applications. SIAM J. Comput. 14(1), 93–105 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  46. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.K.: A core library for robust numeric and geometric computation. In: Proceedings of 15th Annual ACM Symposium on Computational Geometry (SoCG), pp. 351–359. Association for Computing Machinery (ACM) Press, New York (1999)

  47. Kerber, M.: On filter methods in Cgal’s 2D curved kernel. Technical Report ACS-TR-243404-03, Algorithms for Complex Shapes (2008)

  48. Kerber, M.: Geometric Algorithms for Algebraic Curves and Surfaces. Ph.D. thesis, Universität des Saarlandes, Germany (2009)

  49. Kettner L.: Using generic programming for designing a data structure for polyhedral surfaces. Comput. Geom. Theory Appl. 13(1), 65–90 (1999)

    MATH  Google Scholar 

  50. Kunze, R., Wolter, F.-E., Rausch, T.: Geodesic Voronoi diagrams on parametric surfaces. In: Computer Graphics International Conference, Washington, DC, USA, 1997, pp. 230. IEEE Computer Society Press, Washington, DC (1997)

  51. Meyerovitch, M.: Robust, generic and efficient construction of envelopes of surfaces in three-dimensional space. In: Proceedings of 14th Annual European Symposium on Algorithms (ESA). LNCS, vol. 4168, pp. 792–803. Springer, Berlin (2006)

  52. Meyerovitch, M., Wein, R., Zukerman, B.: 3D envelopes. In: Cgal User and Reference Manual. Cgal Editorial Board, 3.7 edn. (2010). http://www.cgal.org/Manual/3.7/doc_html/cgal_manual/packages.html#Pkg:Envelope3

  53. Miles R.E.: Random points, sets and tessellations on the surface of a sphere. Indian J. Stat. 33, 145–174 (1971)

    MATH  MathSciNet  Google Scholar 

  54. Na H.-S., Lee C.-N., Cheong O.: Voronoi diagrams on the sphere. Comput. Geom. Theory Appl. 23(2), 183–194 (2002)

    MATH  MathSciNet  Google Scholar 

  55. Okabe A., Boots B., Sugihara K., Nok Chiu S.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, New York (2000)

    MATH  Google Scholar 

  56. Albuquerque Pinto, G., Jussieu de Rezende, P.: Additively weighted Voronoi diagram on the oriented projective plane. In: The Canadian Conference on Computational Geometry (2000)

  57. Setter, O., Sharir, M., Halperin, D.: Constructing two-dimensional Voronoi diagrams via divide-and-conquer of envelopes in space. In: Proceedings of 6th Annual International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 43–52 (2009)

  58. Sugihara K.: Laguerre Voronoi diagram on the sphere. J. Geom. Graph. 6(1), 69–81 (2002)

    MATH  MathSciNet  Google Scholar 

  59. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming techniques applied to Cgal’s arrangement package. Comput. Geom. Theory Appl. 38(1–2), 37–63 (2007) (Special issue on Cgal)

    Google Scholar 

  60. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. In: Cgal User and Reference Manual. Cgal Editorial Board, 3.7 edn. (2010). http://www.cgal.org/Manual/3.7/doc_html/cgal_manual/packages.html#Pkg:Arrangements2

  61. Yap C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds) Handbook of Discrete and Computational Geometry, chap. 41, 2nd edn, pp. 927–952. Chapman & Hall/CRC, London (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Berberich.

Additional information

This work has been supported in part by the Israel Science Foundation (grant no. 236/06), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berberich, E., Fogel, E., Halperin, D. et al. Arrangements on Parametric Surfaces II: Concretizations and Applications. Math.Comput.Sci. 4, 67–91 (2010). https://doi.org/10.1007/s11786-010-0043-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-010-0043-4

Keywords

Mathematics Subject Classification (2010)