Skip to main content
Log in

Fundamentals of Computational Conformal Geometry

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Computational conformal geometry is an inter-disciplinary field between mathematics and computer science. This work introduces the fundamentals of computational conformal geometry, including theoretic foundation, computational algorithms, and engineering applications. Two computational methodologies are emphasized, one is the holomorphic differentials based on Riemann surface theory and the other is surface Ricci flow from geometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schinzinger R., Laura P.A.: Conformal Mapping: Methods and Applications. Dover, NY (2003)

    MATH  Google Scholar 

  2. DeLillo T.K.: The accuracy of numerical conformal mapping methods: a survey of examples and results. SIAM J. Numer. Anal. 31(3), 788–812 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ivanov V.I., Trubetskov M.K.: Handbook of conformal mapping with computer-aided visualization. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  4. Binder I., Braverman M., Yampolsky M.: On the computational complexity of the Riemann mapping. Ark. Mat. 45(2), 221–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Trefethen, L.N. (ed): Numerical conformal mapping. North-Holland Publishing Co., Amsterdam (1986) [reprint of J. Comput. Appl. Math. 14(1–2) (1986)]

  6. Wegmann, R.: Methods for numerical conformal mapping. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 2, pp. 351–477 Elsevier, Amsterdam (2005)

  7. Henrici, P.: Applied and computational complex analysis. In: Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions, vol 3. Wiley, London (1993)

  8. Driscoll T.A., Trefethen L.N.: Schwarz–Christoffel Mapping. Cambridge Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  9. Banjai L., Trefethen L.N.: A multipole method for Schwarz–Christoffel mapping of polygon with thousands of sides. SIAM J. Comput. 25(3), 1042–1065 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delillo T.K., Elcrat A.R., Pfaltzgraff J.A.: Schwarz–Christoffel mapping of multiply connected domains. J. d’Analyse Mathématique 94(1), 17–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crowdy D.: The Schwarz–Christoffel mapping to bounded multiply connected polygonal domains. Proc. R. Soc. A 461, 2653–2678 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marshall D.E., Rohde S.: Convergence of a variant of the zipper algorithm for conformal mapping. SIAM J. Numer. 45(6), 2577–2609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bishop, C.J.: Conformal Mapping in Linear Time (preprint)

  14. Driscoll T.A., Vavasis S.A.: Numerical conformal mapping using cross-ratios and Delaunay triangulation. SIAM Sci. Comp. 19, 1783–1803 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. SIGGRAPH 2002, pp. 362–371 (2002)

  17. Desbrun M., Meyer M., Alliez P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum (Proc. Eurographics 2002) 21(3), 209–218 (2002)

    Article  Google Scholar 

  18. Floater M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gotsman C., Gu X., Sheffer A.: Fundamentals of spherical parameterization for 3D meshes. ACM Trans. Graph. 22(3), 358–363 (2003)

    Article  Google Scholar 

  20. Gu X., Wang Y., Chan T.F., Thompson P.M., Yau S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)

    Article  Google Scholar 

  21. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186, Springer, Berlin (2005)

  22. Sheffer A., Praun E., Rose K.: Mesh parameterization methods and their applications. Found. Trends. Comput. Graph. Vis. 2(2), 105–171 (2006)

    Article  Google Scholar 

  23. Gu, X., Yau, S.-T.: Global conformal parameterization. In: Symposium on Geometry Processing, pp. 127–137 (2003)

  24. Mercat C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2004)

    Article  MathSciNet  Google Scholar 

  25. Hirani, A.N.: Discrete exterior calculus. PhD thesis, California Institute of Technology (2003)

  26. Gortler S.J., Gotsman C., Thurston D.: Discrete one-forms on meshes and applications to 3D mesh parameterization. Comput. Aided Geom. Des. 23(2), 83–112 (2005)

    Article  MathSciNet  Google Scholar 

  27. Tewari G., Gotsman C., Gortler S.J.: Meshing genus-1 point clouds using discrete one-forms. Comput. Graph. 30(6), 917–926 (2006)

    Article  Google Scholar 

  28. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: Symposium on Geometry Processing, pp. 201–210 (2006)

  29. Zeng, W., Yin, X., Zhang, M., Luo, F., Gu, X.: Generalized Koebe’s method for conformal mapping multiply connected domains. In: SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM), pp. 89–100 (2009)

  30. Zeng, W., Luo, F., Yau, S.-T., Gu, X.: Surface Quasi-Conformal Mapping by Solving Beltrami Equations. In: IMA Conference on the Mathematics of Surfaces, pp. 391–408 (2009)

  31. Hamilton R.S.: Three manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Hamilton, R.S.: The Ricci flow on surfaces. In: Mathematics and General Relativity (Santa Cruz, CA, 1986). Contemp. Math., vol. 71. American Mathematical Society, Providence (1988)

  33. Thurston, W.P.: Geometry and Topology of Three-Manifolds. In: Lecture Notes at Princeton University (1980)

  34. Koebe P.: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)

    Google Scholar 

  35. Thurston, W.: The finite Riemann mapping theorem, 1985. Invited talk, An International Symposium at Purdue University on the occasion of the proof of the Bieberbach conjecture, March 1985.

  36. Rodin B., Sullivan D.: The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26(2), 349–360 (1987)

    MathSciNet  MATH  Google Scholar 

  37. Colin de verdiére Y.: Un principe variationnel pour les empilements de cercles. Invent. Math. 104(3), 655–669 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Collins C., Stephenson K.: A circle packing algorithm. Comput. Geom. Theory Appl. 25, 233–256 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Chow B., Luo F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63(1), 97–129 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Jin M., Kim J., Luo F., Gu X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14, 1030–1043 (2008). doi:10.1109/TVCG.2008.57

    Article  Google Scholar 

  41. Bowers, P.L., Hurdal, M.K.: Planar conformal mapping of piecewise flat surfaces. In: Visualization and Mathematics III, (Berlin), pp. 3–34. Springer, Berlin (2003)

  42. Bobenko A.I., Springborn B.A.: Variational principles for circle patterns and Koebe’s theorem. Trans. Am. Math. Soc. 356, 659–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kharevych L., Springborn B., Schröder P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)

    Article  Google Scholar 

  44. Yamabe H.: The Yamabe problem. Osaka Math. J. 12(1), 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

  45. Trudinger N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22(2), 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  46. Aubin T.: Équations diffréntielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pure Appl. 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  47. Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20(2), 479–495 (1984)

    MathSciNet  MATH  Google Scholar 

  48. Lee J.M., Parker T.H.: The Yamabe problem. Bull. Am. Math. Soc. 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Luo F.: Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Springborn B., Schröder P., Pinkall U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 1–11 (2008)

    Article  Google Scholar 

  51. Gu, X., Yau, S.-T.: Computational Conformal Geometry. In: Advanced Lectures in Mathematics, vol. 3. International Press/Higher Education Press, Beijing (2007)

  52. Bobenko, A., Springborn, B., Pinkall, U.: Discrete conformal equivalence and ideal hyperbolic polyhedra (in preparation)

  53. Zeng, W., Jin, M., Luo, F., Gu, X.: Computing canonical homotopy class representative using hyperbolic structure. In: IEEE International Conference on Shape Modeling and Applications (SMI09) (2009)

  54. Lee, J.M.: Introduction to Topological Manifolds. In: Graduate Texts in Mathematics, vol. 202. Springer, New York (2000)

  55. Lang, S.: Differential and Riemannian Manifolds. In: Graduate Texts in Mathematics, vol. 160. Springer, New York (1995)

  56. Farkas, H.M., Kra, I.: Riemann Surfaces. In: of Graduate Texts in Mathematics, vol. 71. Springer, New York (1991)

  57. do Carmo M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  58. Ahlfors, L.V.: Lectures on Quasiconformal Mappings. In: University Lecture Series, vol. 38. American Mathematical Society, Providence (1966)

  59. Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller Theory. In: Mathematical Surveys and Monographs, vol. 76. American Mathematical Society, Providence (1999)

  60. Schoen R., Yau S.-T.: Lectures on Harmonic Maps. International Press, Boston (1994)

    Google Scholar 

  61. Schoen R., Yau S.-T.: Lectures on Differential Geometry. International Press, Boston (1994)

    MATH  Google Scholar 

  62. Chow B., Lu P., Ni L.: Hamilton’s Ricci Flow. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  63. Forster, O.: Lectures on Riemann Surfaces. Graduate Texts in Mathematics, vol. 81. Springer, New York (1991)

  64. Jost J.: Compact Riemann Surfaces: An Introduction to Contemporary Mathematics. Springer, Berlin (2000)

    Google Scholar 

  65. He Z.-X., Schramm O.: Fixed points, Koebe uniformization and circle packings. Ann. Math. 137(2), 369–406 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  66. Chern S.-S.: An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  67. Fletcher A., Markovic V.: Quasiconformal Maps and Teichmuller Theory. Oxford University Press, Oxford (2007)

    Google Scholar 

  68. Imayoshi Y., Taniguchi M.: An Introduction to Teichmüller Spaces. Springer, Berlin (1992)

    MATH  Google Scholar 

  69. Dai J., Luo W., Jin M., Zeng W., He Y., Yau S.-T., Gu X.: Geometric accuracy analysis for discrete surface approximation. Comput. Aided Geom. Des. 24(6), 323–338 (2006)

    Article  MathSciNet  Google Scholar 

  70. Luo W.: Error estimates for discrete harmonic 1-forms over Riemann surfaces. Commun. Anal. Geom. 14, 1027–1035 (2006)

    MATH  Google Scholar 

  71. Glickenstein, D.: Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds. arXiv:0906.1560 (preprint)

  72. Guo, R.: Local Rigidity of Inversive Distance Circle Packing. Tech. Rep., Mar 8 2009. arXiv.org

  73. Yang Y.-L., Guo R., Luo F., Hu S.-M., Gu X.: Generalized Discrete Ricci Flow. Comput. Graph. Forum. 28(7), 2005–2014 (2009)

    Article  Google Scholar 

  74. Gu, X., Zhang, S., Huang, P., Zhang, L., Yau, S.-T., Martin, R.: Holoimages. In: Proc. ACM Solid and Physical Modeling, pp. 129–138 (2006)

  75. Costa C.: Example of a complete minimal immersion in \({\mathbb{R}^3}\) of genus one and three embedded ends. Bol. Soc. Bras. Mat. 15, 47–54 (1984)

    Article  MATH  Google Scholar 

  76. Lai Y., Jin M., Xie X., He Y., Palacios J., Zhang E., Hu S., Gu X.: Metric-driven RoSy fields design. IEEE Trans. Vis. Comput. Graph. (TVCG) 15(3), 95–108 (2010)

    Google Scholar 

  77. Gu X., He Y., Qin H.: Manifold splines. Graph. Models 68(3), 237–254 (2006)

    Article  MATH  Google Scholar 

  78. Crane K., Desbrun M., Schröder P.: Trivial connections on discrete surfaces. Comput. Graph. Forum 29(5), 1525–1533 (2010)

    Article  Google Scholar 

  79. Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.E.: Conformal virtual colon flattening. In: Symposium on Solid and Physical Modeling, pp. 85–93 (2006)

  80. Wang S., Wang Y., Jin M., Gu X.D., Samaras D.: Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1209–1220 (2007)

    Article  Google Scholar 

  81. Zeng, W., Zeng, Y., Wang, Y., Yin, X., Gu, X., Samaras, D.: 3D non-rigid surface matching and registration based on holomorphic differentials. In: The 10th European Conference on Computer Vision (ECCV) 2008, pp. 1–14 (2008)

  82. Zeng W., Samaras D., Gu X.: Ricci flow for 3D shape analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 32(4), 662–677 (2010)

    Article  Google Scholar 

  83. Zeng W., Lui L.M., Gu X., Yau S.-T.: Shape analysis by conformal modules. Methods Appl. Anal. 15(4), 539–556 (2008)

    MathSciNet  MATH  Google Scholar 

  84. Jin, M., Zeng, W., Ning, D., Gu, X.: Computing Fenchel-Nielsen coordinates in Teichmuller shape space. In: IEEE International Conference on Shape Modeling and Applications (SMI09) (2009)

  85. Sarkar, R., Yin, X., Gao, J., Gu, X.: Greedy Routing with Guaranteed Delivery Using Ricci Flows. In: Proc. of the 8th International Symposium on Information Processing in Sensor Networks (IPSN’09), pp. 121–132, April (2009)

  86. Sarkar, R., Zeng, W., Gao, J., Gu, X.: Covering Space for In-Network Sensor Data Storage. In: Proc. of the 9th International Symposium on Information Processing in Sensor Networks (IPSN’10), pp. 232–243, April (2010)

  87. Jin, M., Wang, Y., Yau, S.-T., Gu, X.: Optimal global conformal surface parameterization. In: IEEE Visualization 2004, pp. 267–274 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Xianfeng Gu.

Additional information

This work was completed with the support of NSF, NIH and ONR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, D.X., Luo, F. & Yau, ST. Fundamentals of Computational Conformal Geometry. Math.Comput.Sci. 4, 389 (2010). https://doi.org/10.1007/s11786-011-0065-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-011-0065-6

Keywords

Mathematics Subject Classification (2000)

Navigation