Skip to main content
Log in

Conditional Resolvability of Honeycomb and Hexagonal Networks

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Given a graph G = (V, E), a set \({W \subseteq V}\) is said to be a resolving set if for each pair of distinct vertices \({u, v \in V}\) there is a vertex x in W such that \({d(u, x) \neq d(v, x)}\) . The resolving number of G is the minimum cardinality of all resolving sets. In this paper, conditions are imposed on resolving sets and certain conditional resolving parameters are studied for honeycomb and hexagonal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. András S., Eric T.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beerliova Z., Eberhard F., Erlebach T., Hall A., Hoffman M., Mihalák M.: Network discovery and verification. IEEE J. Sel. Areas Commun. 24(12), 2168–2181 (2006)

    Article  Google Scholar 

  3. Bharati R., Indra R., Cynthia J.A., Paul M.: On Minimum Metric Dimension. In: Proceedings of the Indonesia-Japan Conference on Combinatorial Geometry and Graph Theory, September 13–16, Bandung, Indonesia (2003)

  4. Bharati R., Indra R., Chris Monica M., Paul M.: Metric dimension of enhanced hypercube networks. J. Combin. Math. Combin. Comput. 67, 5–15 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bharati R., Indra R., Venugopal P., Chris Monica M.: Minimum metric dimension of illiac networks. Ars Combin. (Accepted)

  6. Chartrand G., Eroh L., Johnson M.A., Oellermann O.: Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 105, 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  8. Goddard W.: Statistic mastermind revisited. J. Combin. Math. Combin. Comput. 51, 215–220 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Harary F., Melter R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)

    MathSciNet  Google Scholar 

  10. Johnson M.A.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 3, 203–236 (1993)

    Article  MATH  Google Scholar 

  11. Khuller S., Ragavachari B., Rosenfield A.: Landmarks in Graphs. Discret. Appl. Math. 70(3), 217–229 (1996)

    Article  MATH  Google Scholar 

  12. Melter R.A., Tomcscu I.: Metric bases in digital geometry. Comput. Vis. Graph. Image Process. 25, 113–121 (1984)

    Article  Google Scholar 

  13. Paul M., Abd-El-Barr M.I., Indra R., Bharati R.: An Efficient Representation of Benes Networks and its Applications. J. Discret. Algorithms 6(1), 11–19 (2008)

    Article  MATH  Google Scholar 

  14. Paul M., Bharati R., Indra R., Chris Monica M.: On minimum metric dimension of honeycomb networks. J. Discret. Algorithms 6(1), 20–27 (2008)

    Article  MATH  Google Scholar 

  15. Paul M., Bharati R., Indra R., Chris Monica M.: Land marks in binary tree derived architectures. Ars Combin. 99, 473–486 (2011)

    MathSciNet  Google Scholar 

  16. Paul M., Bharati R., Indra R., Chris Monica M.: Landmarks in Torus Networks. J. Discret. Math. Sci. Cryptograph. 9(2), 263–271 (2006)

    MATH  Google Scholar 

  17. Saenpholphat V., Zhang P.: Conditional resolvability of graphs: a survey. IJMMS 38, 1997–2017 (2003)

    Google Scholar 

  18. Slater P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  Google Scholar 

  19. Slater P.J.: Dominating and reference sets in a graph. J. Math. Phys. Sci. 22(4), 445–455 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Sharieh A., Qatawneh M., Almobaideen W., Sleit A.: Hex-Cell: modeling, topological properties and routing algorithm. Eur. J. Sci. Res. 22(2), 457–468 (2008)

    Google Scholar 

  21. Söderberg S., Shapiro H. S.: A combinatory detection problem. Am. Math. Monthly 70, 1066 (1963)

    Article  MATH  Google Scholar 

  22. Stojmenovic I.: Networks: topological properties and communication algorithms. IEEE Trans. Parallel Distrib. Syst. 8, 1036–1042 (1997)

    Article  Google Scholar 

  23. Trobec R.: Two-dimensional regular d-meshes. Parallel Comput. 26, 1945–1953 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rajan.

Additional information

This research is supported by The Major Research Project- No. F. 38-120/2009(SR) of the University Grants Commission, New Delhi, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, B., Sonia, K.T. & Chris Monica, M. Conditional Resolvability of Honeycomb and Hexagonal Networks. Math.Comput.Sci. 5, 89–99 (2011). https://doi.org/10.1007/s11786-011-0076-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-011-0076-3

Keywords

Mathematics Subject Classification (2010)

Navigation