Abstract
We set up a left ring of fractions over a certain ring of boundary problems for linear ordinary differential equations. The fraction ring acts naturally on a new module of generalized functions. The latter includes an isomorphic copy of the differential algebra underlying the given ring of boundary problems. Our methodology employs noncommutative localization in the theory of integro-differential algebras and operators. The resulting structure allows to build a symbolic calculus in the style of Heaviside and Mikusiński, but with the added benefit of incorporating boundary conditions where the traditional calculi allow only initial conditions. Admissible boundary conditions include multiple evaluation points and nonlocal conditions. The operator ring is noncommutative, containing all integrators initialized at any evaluation point.
Similar content being viewed by others
References
Agarwal R.P.: Boundary Value Problems for Higher Order Differential Equations. World Scientific Publishing Co., Teanecks (1986)
Agarwal R.P., O’Regan D.: An Introduction to Ordinary Differential Equations. Springer, Berlin (2008)
Albrecher, H., Constantinescu, C., Pirsic, G., Regensburger, G., Rosenkranz, M.: An algebraic approach to the analysis of gerber-shiu functions. Insurance: mathematics and economics, Special Issue on Gerber-Shiu functions: accpeted (2009)
Baxter G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731–742 (1960)
Berg Lothar: Einführung in die Operatorenrechung. Deutscher Verlag der Wissenschaften, Berlin (1962)
Berg Lothar: Operatorenrechnung I, II. VEB Deutscher Verlag der Wissenschaften, Berlin (1972)
Bittner R.: Rachunek Operatorow w Przestrzeniach Linowych. PWN, Warsaw (1974)
Bostan Alin, Chyzak Frédéric, Li Ziming, Salvy Bruno: Fast computation of common left multiples of linear ordinary differential operators. ACM Commun. Comput. Algebra 45(1/2), 111–112 (2011)
Bourbaki N.: Topological Vector Spaces. Chapters 1–5. Elements of Mathematics (Berlin). Springer, Berlin (1987)
Buchberger Bruno, Rosenkranz Markus: Transforming problems from analysis to algebra: a case study in linear boundary problems. J. Symb. Comput. 47(6), 589–609 (2012)
Chyzak, Frédéric: Holonomic systems and automatic proofs of identities. Technical report 2371, Institut National de la Récherche en Informatique et Automatique, Oct 1994
Cohn, P.M.: Algebra, vol. 1, 2nd edn. Wiley, Chichester (1982)
Cohn P.M.: Free Ideal Rings and Localization in General Rings, vol. 3 of New Mathematical Monographs. Cambridge University Press, Cambridge (2006)
Cohn P.M.: Introduction to Ring Theory. Springer, (2000)
Dezin, Aleksei A.: Partial Differential Equations. Springer Series in Soviet Mathematics. Springer, Berlin. An Introduction to a General Theory of Linear Boundary Value Problems, Translated from the Russian by Ralph P. Boas. (1987)
DiBucchianico, A.: An introduction to umbral calculus. Lecture notes, available at www.win.tue.nl/adibucch/eidma.ps, Feb 1998
Dimovski, I.: Nonlocal operational calculi. Trudy Mat. Inst. Steklov., Izbran. Voprosy Mat. Fiz. i Anal. 203:58–73 (1994)
Dimovski, I.: Operational calculi for boundary value problems. Talk at the algebraic aspects of differential and integral operators session (AADIOS’12). In: Proceedings of 18th conference on applications of computer algebra (ACA), Sofia, 25–28 June 2012
Dimovski Ivan: Convolutional Calculus, vol. 43 of Mathematics and its Applications (East European Series). Kluwer Academic Publishers Group, Dordrecht (1990)
Duffy D.G.: Green’s Functions with Applications. Studies in Advanced Mathematics. Chapman and Hall, Boca Raton (2001)
Engl H.W.: Integralgleichungen. Springer Lehrbuch Mathematik. Springer, Vienna (1997)
Flowe R.P., Harris G.A.: A note on generalized Vandermonde determinants. Siam J. Matrix Anal. Appl. 14, 1146–1151 (1993)
Yu D.: Grigoriev. Complexity of factoring and calculating the GCD of linear ordinary differential operators. J. Symb. Comput. 10(1), 7–37 (1990)
Guo, Li: Baxter algebras and the umbral calculus. Adv. Appl. Math., 27(2–3):405–426 (2001). Special issue in honor of Dominique Foata’s 65th birthday (Philadelphia, PA, 2000)
Guo, Li: Baxter algebras and differential algebras. In: Differential Algebra and Related Topics (Newark, NJ, 2000), pp. 281–305. World Scientific Publishers, River Edge, NJ (2002)
Guo L.: An Introduction to Rota–Baxter Algebras. International Press, Boston (2012)
Heatherly, H.E., Huffman, J.P.: Noncommutative operational calculus. In: Proceedings of the 15th annual conference of applied mathematics (Edmond, OK, 1999), vol. 2 of Electron. J. Differ. Equ. conference, Southwest Texas State University, pp. 11–18 (electronic), San Marcos, TX (1999)
Heaviside, O.: On operators in physical mathematics. Part I. In: Proceedings of the Royal Society, vol. 52, pp. 504–529, London (1893)
Heaviside, O.: On operators in physical mathematics. Part II. In: Proceedings of the Royal Society, vol. 54, pp. 105–143, London (1894)
Ichikawa S., Kishima A.: Matric operational calculus and its applications. Mem. Fac. Engrg. Kyoto Univ. 32, 210–222 (1970)
Ichikawa, S., Kishima, A.: Matric operational calculus and its applications II. Mem. Fac. Engrg. Kyoto Univ., 33:80–93. (With appendix). (1971)
Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I: Gewöhnliche Differentialgleichungen, volume 18 of Mathematik und ihre Anwendungen in Physik und Technik A. Akademische Verlagsgesellschaft, Leipzig, eighth edition, (1967)
Keigher W.F.: On the ring of Hurwitz series. Comm. Algebra 25(6), 1845–1859 (1997)
Keigher W.F., Pritchard F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebra 146(3), 291–304 (2000)
Kolchin E.R.: Differential Algebra and Algebraic Groups, vol. 54 of Pure and Applied Mathematics. Academic Press, New York-London (1973)
Korporal, A.: Symbolic methods for generalized Green’s operators and boundary problems. PhD thesis, Johannes Kepler University, Linz, Austria. In progress (2012)
Korporal, A.: Georg Regensburger, and Markus Rosenkranz. A Maple package for integro-differential operators and boundary problems. Also presented as a poster at ISSAC ’10 (2010)
Korporal, A., Regensburger, G., Rosenkranz, M.: Regular and singular boundary problems in MAPLE. In: Proceedings of the 13th international workshop on computer algebra in scientific computing, CASC’2011 (Kassel, Germany, 5–9 Sept 2011), vol. 6885 of lecture notes in computer science. Springer, Berlin (2011)
Korporal, A., Regensburger, G., Rosenkranz, M.: Symbolic computation for ordinary boundary problems in maple. In: Proceedings of the 37th international symposium on symbolic and algebraic computation (ISSAC’09). Software presentation (2012)
Krattenthaler, C.: Advanced Determinant Calculus. Sém. Lothar. Combin., 42: Art. B42q, pp. 67 (electronic), 1999. The Andrews Festschrift, Maratea (1998)
Lam T.Y.: Lectures on Modules and Rings, vol. 189 of Graduate Texts in Mathematics. Springer, New York (1999)
Maslov V.P.: Operatornye metody. Izdat. “Nauka”, Moscow (1973)
Mikusiński J.: Le calcul opérationnel d’intervalle fini. Stud. Math. 15, 225–251 (1956)
Mikusiński Jan: Operational Calculus, vol. 8 of International Series of Monographs on Pure and Applied Mathematics. Pergamon Press, New York (1959)
Nachbin L.: Sur les algèbres denses de fonctions différentiables sur une variété. C. R. Acad. Sci. 228, 1549–1551 (1949)
Pérès J.: Calcul symbolique d’heaviside et calcul de composition de v. volterra. Compt. Rend. Acad. Sci. 217(22), 517–520 (1943)
Picavet G.: Localization with respect to endomorphisms. Semigroup Forum 67(1), 76–96 (2003)
Przeworska-Rolewicz D.: Algebraic Analysis. PWN—Polish Scientific Publishers, Warsaw (1988)
Raševskiĭ P.K.: On the extension of the operational calculus to boundary problems. Uspehi Matem. Nauk (N.S.) 8(4(56)), 65–80 (1953)
Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. (4), 188(1):123–151. doi:10.1007/s10231-008-0068-3 (2009)
Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to integro-differential operators. In: ISSAC 2009 proceedings of the 2009 international symposium on symbolic and algebraic computation, pp. 287–294. ACM, New York (2009)
Ritt J.F.: Differential Algebra. Dover Publications Inc., New York (1966)
Rosenkranz, M.: Lagrange Inversion. Master’s thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz (1997). Available at http://www.risc.jku.at/publications/download/risc_2383/Diploma.pdf
Rosenkranz M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symb. Comput. 39(2), 171–199 (2005)
Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: Jeffrey, D., editor, ISSAC’08: proceedings of the 2008 international symposium on symbolic and algebraic computation. ACM Press, New York (2008)
Rosenkranz M., Regensburger G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symb. Comput. 43(8), 515–544 (2008)
Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: Vladimir, P.G., Ernst W.M., Evgenii, H.V., editors, Computer Algebra in Scientific Computing. In: Proceedings of the 11th international workshop (CASC 2009), vol. 5743 of LNCS, pp. 269–283, Springer, Berlin (2009)
Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis of boundary problems: from rewriting to parametrized Gröbner bases. In: Langer, U., Paule, P., editors, Numerical and Symbolic Scientific Computing: Progress and Prospects, pp. 273–331. Springer, Berlin (2012)
Rota G.-C.: Baxter algebras and combinatorial identities (I, II). Bull. Am. Math. Soc. 75, 325–334 (1969)
Salvy B., Zimmerman P.: Gfun: a maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw 20(2), 163–177 (1994)
Schwarz, F.: A factorization algorithm for linear ordinary differential equations. In: ISSAC ’89: proceedings of the ACM-SIGSAM 1989 international symposium on symbolic and algebraic computation, pp. 17–25, New York, NY, USA. ACM Press, New York (1989)
Schwarz, F.: Algorithmic Lie Theory for Solving Ordinary Differential Equations, vol. 291 of Pure and Applied Mathematics (Boca Raton). Chapman and Hall/CRC, Boca Raton (2008)
Škoda, Z.: Noncommutative localization in noncommutative geometry. In: Non-Commutative Localization in Algebra and Topology, vol. 330 of London Math. Soc. Lecture note Ser., pp. 220–313. Cambridge University Press, Cambridge (2006)
Spiridonova, M.: Operational methods in the environment of a computer algebra system. Talk at the algebraic aspects of differential and integral operators session (AADIOS’10), In: Proceedings of the 16th conference on applications of computer algebra (ACA), Vlora, 24–27 June 2010
Stakgold I.: Green’s Functions and Boundary Value Problems. Wiley, New York (1979)
Stenström, B.: Rings of Quotients. Springer, New York. Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theory (1975)
Tec, L.: A symbolic framework for general polynomial domains in Theorema: applications to boundary problems. PhD thesis, Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria (2011)
Tsai, H.: Algorithms for algebraic analysis. PhD thesis, University of California at Berkeley, Spring (2000)
Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator. In: ISSAC ’96: proceedings of the 1996 international symposium on symbolic and algebraic computation, pp. 226–231, New York, NY, USA. ACM Press, New York (1996)
van der Put, M., Singer, M.F.: Galois theory of linear differential equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2003)
Volterra V.: The Theory of Permutable Functions. Princeton University Press, Princeton (1915)
Volterra V., Pérès J.: Leçons sur la composition et les fonctions permutables. Gauthier-Villars, Paris (1924)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author acknowledges support from the EPSRC First Grant EP/I037474/1.
Rights and permissions
About this article
Cite this article
Rosenkranz, M., Korporal, A. A Noncommutative Algebraic Operational Calculus for Boundary Problems. Math.Comput.Sci. 7, 201–227 (2013). https://doi.org/10.1007/s11786-013-0154-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-013-0154-9
Keywords
- Linear boundary problems
- Differential algebra
- Mikusiński calculus
- Integro-differential operators
- Ring of fractions