Skip to main content
Log in

A Noncommutative Algebraic Operational Calculus for Boundary Problems

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We set up a left ring of fractions over a certain ring of boundary problems for linear ordinary differential equations. The fraction ring acts naturally on a new module of generalized functions. The latter includes an isomorphic copy of the differential algebra underlying the given ring of boundary problems. Our methodology employs noncommutative localization in the theory of integro-differential algebras and operators. The resulting structure allows to build a symbolic calculus in the style of Heaviside and Mikusiński, but with the added benefit of incorporating boundary conditions where the traditional calculi allow only initial conditions. Admissible boundary conditions include multiple evaluation points and nonlocal conditions. The operator ring is noncommutative, containing all integrators initialized at any evaluation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal R.P.: Boundary Value Problems for Higher Order Differential Equations. World Scientific Publishing Co., Teanecks (1986)

    Book  MATH  Google Scholar 

  2. Agarwal R.P., O’Regan D.: An Introduction to Ordinary Differential Equations. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Albrecher, H., Constantinescu, C., Pirsic, G., Regensburger, G., Rosenkranz, M.: An algebraic approach to the analysis of gerber-shiu functions. Insurance: mathematics and economics, Special Issue on Gerber-Shiu functions: accpeted (2009)

  4. Baxter G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731–742 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berg Lothar: Einführung in die Operatorenrechung. Deutscher Verlag der Wissenschaften, Berlin (1962)

    Google Scholar 

  6. Berg Lothar: Operatorenrechnung I, II. VEB Deutscher Verlag der Wissenschaften, Berlin (1972)

    Google Scholar 

  7. Bittner R.: Rachunek Operatorow w Przestrzeniach Linowych. PWN, Warsaw (1974)

    Google Scholar 

  8. Bostan Alin, Chyzak Frédéric, Li Ziming, Salvy Bruno: Fast computation of common left multiples of linear ordinary differential operators. ACM Commun. Comput. Algebra 45(1/2), 111–112 (2011)

    Article  Google Scholar 

  9. Bourbaki N.: Topological Vector Spaces. Chapters 1–5. Elements of Mathematics (Berlin). Springer, Berlin (1987)

    Book  Google Scholar 

  10. Buchberger Bruno, Rosenkranz Markus: Transforming problems from analysis to algebra: a case study in linear boundary problems. J. Symb. Comput. 47(6), 589–609 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chyzak, Frédéric: Holonomic systems and automatic proofs of identities. Technical report 2371, Institut National de la Récherche en Informatique et Automatique, Oct 1994

  12. Cohn, P.M.: Algebra, vol. 1, 2nd edn. Wiley, Chichester (1982)

  13. Cohn P.M.: Free Ideal Rings and Localization in General Rings, vol. 3 of New Mathematical Monographs. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  14. Cohn P.M.: Introduction to Ring Theory. Springer, (2000)

  15. Dezin, Aleksei A.: Partial Differential Equations. Springer Series in Soviet Mathematics. Springer, Berlin. An Introduction to a General Theory of Linear Boundary Value Problems, Translated from the Russian by Ralph P. Boas. (1987)

  16. DiBucchianico, A.: An introduction to umbral calculus. Lecture notes, available at www.win.tue.nl/adibucch/eidma.ps, Feb 1998

  17. Dimovski, I.: Nonlocal operational calculi. Trudy Mat. Inst. Steklov., Izbran. Voprosy Mat. Fiz. i Anal. 203:58–73 (1994)

  18. Dimovski, I.: Operational calculi for boundary value problems. Talk at the algebraic aspects of differential and integral operators session (AADIOS’12). In: Proceedings of 18th conference on applications of computer algebra (ACA), Sofia, 25–28 June 2012

  19. Dimovski Ivan: Convolutional Calculus, vol. 43 of Mathematics and its Applications (East European Series). Kluwer Academic Publishers Group, Dordrecht (1990)

    Google Scholar 

  20. Duffy D.G.: Green’s Functions with Applications. Studies in Advanced Mathematics. Chapman and Hall, Boca Raton (2001)

    Book  Google Scholar 

  21. Engl H.W.: Integralgleichungen. Springer Lehrbuch Mathematik. Springer, Vienna (1997)

    Google Scholar 

  22. Flowe R.P., Harris G.A.: A note on generalized Vandermonde determinants. Siam J. Matrix Anal. Appl. 14, 1146–1151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu D.: Grigoriev. Complexity of factoring and calculating the GCD of linear ordinary differential operators. J. Symb. Comput. 10(1), 7–37 (1990)

    Article  MATH  Google Scholar 

  24. Guo, Li: Baxter algebras and the umbral calculus. Adv. Appl. Math., 27(2–3):405–426 (2001). Special issue in honor of Dominique Foata’s 65th birthday (Philadelphia, PA, 2000)

  25. Guo, Li: Baxter algebras and differential algebras. In: Differential Algebra and Related Topics (Newark, NJ, 2000), pp. 281–305. World Scientific Publishers, River Edge, NJ (2002)

  26. Guo L.: An Introduction to Rota–Baxter Algebras. International Press, Boston (2012)

    Google Scholar 

  27. Heatherly, H.E., Huffman, J.P.: Noncommutative operational calculus. In: Proceedings of the 15th annual conference of applied mathematics (Edmond, OK, 1999), vol. 2 of Electron. J. Differ. Equ. conference, Southwest Texas State University, pp. 11–18 (electronic), San Marcos, TX (1999)

  28. Heaviside, O.: On operators in physical mathematics. Part I. In: Proceedings of the Royal Society, vol. 52, pp. 504–529, London (1893)

  29. Heaviside, O.: On operators in physical mathematics. Part II. In: Proceedings of the Royal Society, vol. 54, pp. 105–143, London (1894)

  30. Ichikawa S., Kishima A.: Matric operational calculus and its applications. Mem. Fac. Engrg. Kyoto Univ. 32, 210–222 (1970)

    MathSciNet  Google Scholar 

  31. Ichikawa, S., Kishima, A.: Matric operational calculus and its applications II. Mem. Fac. Engrg. Kyoto Univ., 33:80–93. (With appendix). (1971)

  32. Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I: Gewöhnliche Differentialgleichungen, volume 18 of Mathematik und ihre Anwendungen in Physik und Technik A. Akademische Verlagsgesellschaft, Leipzig, eighth edition, (1967)

  33. Keigher W.F.: On the ring of Hurwitz series. Comm. Algebra 25(6), 1845–1859 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Keigher W.F., Pritchard F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebra 146(3), 291–304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolchin E.R.: Differential Algebra and Algebraic Groups, vol. 54 of Pure and Applied Mathematics. Academic Press, New York-London (1973)

    Google Scholar 

  36. Korporal, A.: Symbolic methods for generalized Green’s operators and boundary problems. PhD thesis, Johannes Kepler University, Linz, Austria. In progress (2012)

  37. Korporal, A.: Georg Regensburger, and Markus Rosenkranz. A Maple package for integro-differential operators and boundary problems. Also presented as a poster at ISSAC ’10 (2010)

  38. Korporal, A., Regensburger, G., Rosenkranz, M.: Regular and singular boundary problems in MAPLE. In: Proceedings of the 13th international workshop on computer algebra in scientific computing, CASC’2011 (Kassel, Germany, 5–9 Sept 2011), vol. 6885 of lecture notes in computer science. Springer, Berlin (2011)

  39. Korporal, A., Regensburger, G., Rosenkranz, M.: Symbolic computation for ordinary boundary problems in maple. In: Proceedings of the 37th international symposium on symbolic and algebraic computation (ISSAC’09). Software presentation (2012)

  40. Krattenthaler, C.: Advanced Determinant Calculus. Sém. Lothar. Combin., 42: Art. B42q, pp. 67 (electronic), 1999. The Andrews Festschrift, Maratea (1998)

  41. Lam T.Y.: Lectures on Modules and Rings, vol. 189 of Graduate Texts in Mathematics. Springer, New York (1999)

    Book  Google Scholar 

  42. Maslov V.P.: Operatornye metody. Izdat. “Nauka”, Moscow (1973)

    MATH  Google Scholar 

  43. Mikusiński J.: Le calcul opérationnel d’intervalle fini. Stud. Math. 15, 225–251 (1956)

    MATH  Google Scholar 

  44. Mikusiński Jan: Operational Calculus, vol. 8 of International Series of Monographs on Pure and Applied Mathematics. Pergamon Press, New York (1959)

    Google Scholar 

  45. Nachbin L.: Sur les algèbres denses de fonctions différentiables sur une variété. C. R. Acad. Sci. 228, 1549–1551 (1949)

    MathSciNet  MATH  Google Scholar 

  46. Pérès J.: Calcul symbolique d’heaviside et calcul de composition de v. volterra. Compt. Rend. Acad. Sci. 217(22), 517–520 (1943)

    MATH  Google Scholar 

  47. Picavet G.: Localization with respect to endomorphisms. Semigroup Forum 67(1), 76–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Przeworska-Rolewicz D.: Algebraic Analysis. PWN—Polish Scientific Publishers, Warsaw (1988)

    Book  MATH  Google Scholar 

  49. Raševskiĭ P.K.: On the extension of the operational calculus to boundary problems. Uspehi Matem. Nauk (N.S.) 8(4(56)), 65–80 (1953)

    MathSciNet  Google Scholar 

  50. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. (4), 188(1):123–151. doi:10.1007/s10231-008-0068-3 (2009)

    Google Scholar 

  51. Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to integro-differential operators. In: ISSAC 2009 proceedings of the 2009 international symposium on symbolic and algebraic computation, pp. 287–294. ACM, New York (2009)

  52. Ritt J.F.: Differential Algebra. Dover Publications Inc., New York (1966)

    Google Scholar 

  53. Rosenkranz, M.: Lagrange Inversion. Master’s thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz (1997). Available at http://www.risc.jku.at/publications/download/risc_2383/Diploma.pdf

  54. Rosenkranz M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symb. Comput. 39(2), 171–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: Jeffrey, D., editor, ISSAC’08: proceedings of the 2008 international symposium on symbolic and algebraic computation. ACM Press, New York (2008)

  56. Rosenkranz M., Regensburger G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symb. Comput. 43(8), 515–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: Vladimir, P.G., Ernst W.M., Evgenii, H.V., editors, Computer Algebra in Scientific Computing. In: Proceedings of the 11th international workshop (CASC 2009), vol. 5743 of LNCS, pp. 269–283, Springer, Berlin (2009)

  58. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis of boundary problems: from rewriting to parametrized Gröbner bases. In: Langer, U., Paule, P., editors, Numerical and Symbolic Scientific Computing: Progress and Prospects, pp. 273–331. Springer, Berlin (2012)

  59. Rota G.-C.: Baxter algebras and combinatorial identities (I, II). Bull. Am. Math. Soc. 75, 325–334 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  60. Salvy B., Zimmerman P.: Gfun: a maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw 20(2), 163–177 (1994)

    Article  MATH  Google Scholar 

  61. Schwarz, F.: A factorization algorithm for linear ordinary differential equations. In: ISSAC ’89: proceedings of the ACM-SIGSAM 1989 international symposium on symbolic and algebraic computation, pp. 17–25, New York, NY, USA. ACM Press, New York (1989)

  62. Schwarz, F.: Algorithmic Lie Theory for Solving Ordinary Differential Equations, vol. 291 of Pure and Applied Mathematics (Boca Raton). Chapman and Hall/CRC, Boca Raton (2008)

  63. Škoda, Z.: Noncommutative localization in noncommutative geometry. In: Non-Commutative Localization in Algebra and Topology, vol. 330 of London Math. Soc. Lecture note Ser., pp. 220–313. Cambridge University Press, Cambridge (2006)

  64. Spiridonova, M.: Operational methods in the environment of a computer algebra system. Talk at the algebraic aspects of differential and integral operators session (AADIOS’10), In: Proceedings of the 16th conference on applications of computer algebra (ACA), Vlora, 24–27 June 2010

  65. Stakgold I.: Green’s Functions and Boundary Value Problems. Wiley, New York (1979)

    MATH  Google Scholar 

  66. Stenström, B.: Rings of Quotients. Springer, New York. Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theory (1975)

  67. Tec, L.: A symbolic framework for general polynomial domains in Theorema: applications to boundary problems. PhD thesis, Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria (2011)

  68. Tsai, H.: Algorithms for algebraic analysis. PhD thesis, University of California at Berkeley, Spring (2000)

  69. Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator. In: ISSAC ’96: proceedings of the 1996 international symposium on symbolic and algebraic computation, pp. 226–231, New York, NY, USA. ACM Press, New York (1996)

  70. van der Put, M., Singer, M.F.: Galois theory of linear differential equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2003)

  71. Volterra V.: The Theory of Permutable Functions. Princeton University Press, Princeton (1915)

    Google Scholar 

  72. Volterra V., Pérès J.: Leçons sur la composition et les fonctions permutables. Gauthier-Villars, Paris (1924)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rosenkranz.

Additional information

The first author acknowledges support from the EPSRC First Grant EP/I037474/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenkranz, M., Korporal, A. A Noncommutative Algebraic Operational Calculus for Boundary Problems. Math.Comput.Sci. 7, 201–227 (2013). https://doi.org/10.1007/s11786-013-0154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-013-0154-9

Keywords

Mathematics Subject Classification (2000)